Abstract:
A method of making an adhesive article comprises three steps. First, a backing is provided having first and second opposed major surfaces with respective first and second silicone release layers disposed thereon. The second silicone release layer further comprises a compound represented by the formula: R1 represents a divalent hydrocarbon radical having from 2 to 40 carbon atoms or covalent bond. R2 represents a monovalent or divalent poly(dimethylsiloxane) moiety. X represents —NH— or a covalent bond. Rf represents a perfluorinated group having from 3 to 5 carbon atoms. y is 1 or 2. Second, an adhesive layer is disposed onto the first silicone release layer. Third, the adhesive layer is exposed to E-beam radiation within a process chamber containing oxygen to provide a crosslinked adhesive layer. An adhesive article made by the method and the compound are also disclosed.
Abstract:
A melt additive compound has the general formula (I) wherein R represents a linear alkylene group having from 1 to 18 carbon atoms; n represents an integer from 1 to 4, inclusive; and Rf1 is represented by the general formula II wherein Rf represents a perfluorinated group having from 3 to 5 carbon atoms. Compositions comprising a thermoplastic polymer and the melt additive compound, methods of extruding them and extruded articles are also disclosed.
Abstract:
An adhesive article includes a pressure-sensitive adhesive layer with a release liner releasably adhered thereto. The release liner comprises a thermoplastic polymer and a first release agent represented by the formula: Each R1 represents a hydrocarbylene group having from 2 to 40 carbon atoms; each Rf independently represents a perfluorinated alkyl group of having 3 to 5 carbon atoms; and each X1 is —NH— or a covalent bond. Methods of making the adhesive articles are also disclosed.
Abstract:
A method of making an adhesive article comprises three steps. First, a backing is provided having first and second opposed major surfaces with respective first and second silicone release layers disposed thereon. The second silicone release layer further comprises a compound represented by the formula: R1 represents a divalent hydrocarbon radical having from 2 to 40 carbon atoms or covalent bond. R2 represents a monovalent or divalent poly(dimethylsiloxane) moiety. X represents —NH— or a covalent bond. Rf represents a perfluorinated group having from 3 to 5 carbon atoms. y is 1 or 2. Second, an adhesive layer is disposed onto the first silicone release layer. Third, the adhesive layer is exposed to E-beam radiation within a process chamber containing oxygen to provide a crosslinked adhesive layer. An adhesive article made by the method and the compound are also disclosed.
Abstract:
A fluorine-free composition includes one or more compounds derived from a reaction mixture that includes: (i) at least one isocyanate-reactive (i.e., functionalized) oligomer comprising 2 to 20 repeating units; (ii) at least one polyisocyanate; (iii) optionally at least one additional isocyanate-reactive compound; and (iv) optionally at least one isocyanate blocking agent; wherein the isocyanate-reactive oligomer is made by the radical-initiated reaction of a reaction mixture comprising at least one mercaptan and Sat least one (meth)acrylate monomer, wherein the at least one (meth)acrylate monomer comprises at least one isocyanate-derived group (e.g., a urethane group or a urea group) and at least one hydrocarbon group having at least 16 carbon atoms (and in some embodiments, up to 60 carbon atoms). Such compositions are useful for treating fibrous substrates to enhance their water-repellency.
Abstract:
An amphiphilic polymer comprising: at least 10 wt-% monomeric units comprising alkylene oxide moieties, wherein a majority of the alkylene oxide moieties are ethylene oxide moieties; monomeric units comprising hexafluoropropylene oxide oligomeric moieties having the formula C3F7O—(CF(CF3)CF2O)aCF(CF3)—C(O)N(H)-Q-, wherein Q is a linking group with at least one carbon atom, and “a” is at least 5; and monomeric units comprising pendant groups selected from phosphate groups, phosphonate groups, sulfonate groups, and combinations thereof; wherein the amphiphilic polymer is water dispersible; aqueous coating compositions containing the amphiphilic polymer; and methods of treating a hard surface.
Abstract:
A composition comprising at least one first divalent unit represented by formula: and at least one of a second divalent unit comprising a pendant Z group or a monovalent unit comprising a thioether linkage and a terminal Z group, wherein each Z group is independently selected from the group consisting of —P(O)(OY)2 and —O—P(O)(OY)2. R″ and R′″ are each independently selected from the group consisting of hydrogen and alkyl having from 1 to 4 carbon atoms. Y is selected from the group consisting of hydrogen, alkyl, trialkylsilyl, and a counter cation. Methods of treating a surface using these compositions and articles with a surface in contact with these compositions are provided. Methods of making these compositions are also provided.
Abstract:
A polyurethane polymer, a synthetic leather including such polymer, and a method of making such polymer, wherein the polyurethane polymer includes the reaction product of components including: a fluorinated mono-functional alcohol comprising a perfluorinated (C4-C6)alkyl group, a perfluorinated (C4-C6)alkylene group, or both; a fluorinated aliphatic diol comprising a perfluorinated (C4-C6)alkyl group, a perfluorinated (C4-C6)alkylene group, or both; a hydrocarbon diol; and a diisocyanate; wherein at least one of the following conditions is met: the total of the fluorinated aliphatic diol and the mono-functional alcohol is less than 2 wt-% of the components forming the polyurethane polymer; or the total fluorine content is less than 1 wt-% of the polyurethane polymer.