Abstract:
Flexible, stretchable RFID tags are formed by a pocket that is formed from one or more substrates and layers of adhesive, and an electronic circuit that is located within this pocket. The RFID tags can include a stretchable substrate and an electronic circuit attached to the stretchable substrate by one or a finite number of discrete spaced apart attachment locations. When the pocket is formed by relatively thick adhesive layers adhering together one or more flexible substrates to form an internal cavity, the electronic circuit is located within this cavity and either is not adhered to any of the substrates of the cavity, and is free to move about within the cavity, or the electronic circuit can be attached to a substrate by a thin layer of adhesive.
Abstract:
A single turn loop electronic article surveillance, EAS, gate. The gate includes a closed magnetic core (14), a multi-turn primary winding (16) wound around the core, and a secondary loop (12) passing through the core once. The secondary loop is a self-supporting single turn loop, and the secondary loop is a transmit loop that generates a magnetic drive field for the article detection gate system.
Abstract:
The disclosure generally relates to optical devices, such as interactive displays, and in particular to interactive projection displays having passive input devices. The present disclosure also provides a passive interactive input device having the ability to overcome problematic ambient interference signals in an interactive display, such as an interactive projection display.
Abstract:
The disclosure describes systems of navigating a hazardous environment. The system includes personal protective equipment (PPE) and computing device(s) configured to process sensor data from the PPE, generate pose data of an agent based on the processed sensor data, and track the pose data as the agent moves through the hazardous environment. The PPE may include an inertial measurement device to generate inertial data and a radar device to generate radar data for detecting a presence or arrangement of objects in a visually obscured environment. The PPE may include a thermal image capture device to generate thermal image data for detecting and classifying thermal features of the hazardous environment. The PPE may include one or more sensors to detect a fiducial marker in a visually obscured environment for identifying features in the visually obscured environment. In these ways, the systems may more safely navigate the agent through the hazardous environment.
Abstract:
A mold for making abrasive particles is presented. The mold includes a surface and a plurality of cavities extending downward from the surface. Each cavity includes a particle shape portion comprising a polygonal shape and a fracture portion coupled to the particle shape portion. The fracture portion is configured to break from the particle shape portion during a stress event, resulting in a fractured shape abrasive particle.
Abstract:
Various embodiments disclosed relate to a shaped abrasive particle. The shaped abrasive particle includes at least four major faces and at least six edges joining the four major faces. One of the at least four major faces is a first rake face, a second of the at least four major faces is a second rake face. The first and second rake faces are predominantly joined along only one common edge. A dihedral angle between the first rake face and the second rake face is in a range of from about 71 degrees to about 170 degrees.
Abstract:
In one example, a system includes one or more personal protective equipment (PPE) devices each configured to be worn by a worker, the PPE devices each including one or more sensors that generate activity data indicative of activities of workers operating within one or more work environments. The system also includes a computing device, the computing device configured to: identify, based at least on the activity data, a plurality of clusters of one or more entities, wherein each entity of the entities is associated with one or more of the workers; and output an indication of a difference between performance by a target entity with respect to safety events and performance by the cluster that includes the target entity with respect to safety events.
Abstract:
A method of making a coated abrasive article includes at least four steps. In step a), a web is provided comprising a backing having a make layer precursor disposed thereon. The web moves along a web path in a downweb direction, and the web has a crossweb direction that is perpendicular to the downweb direction. The make layer precursor comprises a first curable binder precursor; In step b) an applied magnetic field is provided. In step c), a mixture of magnetizable non-magnetizable particles is passed through the applied magnetic field and onto the make layer precursor such that the magnetizable and non-magnetizable particles are predominantly deposited onto the web in a drop zone according to a predetermined order. At least one of the magnetizable particles or the non-magnetizable particles comprises abrasive particles. In step d), the make layer precursor is at least partially cured to provide a make layer.
Abstract:
Gradient permittivity films are described. In particular, gradient permittivity films that include a first continuous matrix of a first component having a first relative permittivity and a second component disposed within the continuous matrix having a second relative permittivity. The first permittivity is greater than the second permittivity for at least one wavelength between 20 GHz and 300 GHz. Such films may be useful in improving the signal to noise ratio for transmitting and receiving units behind a protective cover.