Abstract:
Disclosed herein is an electronic device having a force sensing device. The force sensing device receives a continuous force input which is translated into a discrete event. In order to more accurately determine when the discrete event is to occur, the electronic device includes a two low-pass filters that concurrently receive a force signal from the force sensing device. The first low-pass filter has a first bandwidth and the second low-pass filter has a second bandwidth that is greater than the first bandwidth. The two low-pass filters filter the force signal to provide a user interface with a precise feel for slower more deliberate input while also providing fast response times for stronger, shorter input.
Abstract:
An optically transparent force sensor element is compensated for effects of environment by comparing a force reading from a first force-sensitive component with a second force-sensitive components. The first and second force-sensitive components disposed on opposite sides of a flexible substrate within a display stack.
Abstract:
A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
Abstract:
A transparent force sensor for detecting an applied force on a surface of a device. The transparent force sensor includes a transparent force-sensitive film having an array of strain-relief features oriented along a first direction. The transparent force-sensitive film is formed from a transparent piezoelectric material that exhibits a substantially reduced net charge when strained along a primary direction. The force sensor also includes a display element disposed on one side of the transparent force-sensitive film.