Abstract:
The present invention discloses an improved method and apparatus for analyzing the surface of materials using sub-micron laser desorption gas phase analysis. The method uses a combination of near-field optical microscopy and time-of-flight mass spectroscopy.
Abstract:
Methods for controlling transfection efficiency mediated by complexes of cationic species and genetic material by adjusting the amount of membrane-associated proteoglycans and optionally adjusting the plasma concentration of glycosaminoglycans. Transfection efficiency is controlled by the amount of membrane-associated proteoglycans in the cell to be transfected and also by the plasma concentration of glycosaminoglycans. By increasing the amount of membrane-associated proteoglycans in the cell, and optionally decreasing the plasma concentration of glycosaminoglycans, the transfection efficiency can be increased. By decreasing the amount of membrane-associated proteoglycans in the cell, and optionally decreasing the plasma concentration of glycosaminoglycans, the transfection efficiency can be decreased. Transfection efficiency can be controlled, whether performed in vivo, ex vivo, or in vitro.
Abstract:
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit, the integrated circuit including a focal plane array of pixel cells (10), each one of the cells including a photogate (12) overlying the substrate (20) for accumulating photo-generated charge in an underlying portion of the substrate and a CCD device section (14) formed on the substrate adjacent the photogate (12) having a sensing node and at least one charge coupled device stage (16) for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate (12), and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit (604) to provide images of varying resolution. The multiresolution circuit could be employed in an array where the photosensitive portion of each pixel cell is a photodiode.
Abstract:
An active pixel cell includes electronic shuttering capability. The cell can be "shuttered" to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.
Abstract:
A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enyzmes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
Abstract:
Inorganic-organic hybrid mixture sol-gel encapsulated lipid vesicles which are composed of silyl lipids or a mixture of silyl lipids and phospholipids are provided. The present invention also provides encapsulated Langmuir Blogget (LB) membranes and biological macromolecules. The sol-gel encapsulated lipid vesicles, LB membranes and proteins possess a higher stability than conventional vesicles. Inorganic-organic hybrid mixture sol-gels are provided as novel sol-gel materials possessing desirable mechanical and physicochemical properties. Also provided are methods of preparing encapsulated lipid vesicles, LB membranes and proteins. Methods of performing renal dialysis using compositions of the invention are also provided.
Abstract:
A versatile photonic radio frequency (RF) oscillator (10) employs a single optical feedback loop, or multiple feedback loops of different delay times and including at least one optical feedback loop, to generate RF signals with ultra-low phase noise, narrow spectral linewidth, and a continuous wide tuning range of high resolution. Specifically, an electro-optical modulator (12) and a long optical fiber loop are implemented in one dual loop system. In addition, a light beam from a light source (40) can be directly modulated by using a single optical feedback signal, or a plurality of feedback signals from multiple feedback loops, to alter the electrical control signal to the light source. Furthermore, the disclosed system supports both electrical and optical RF outputs (32). External optical injection (28) and electrical injection (30) can be implemented.
Abstract:
Disclosed herein is a heat-inducible N-degron module. A heat-inducible N-degron module is a protein or peptide bearing a destabilizing N-terminal amino acid residue which becomes a substrate of the N-end rule pathway only at a temperature high enough to result in at least partial unfolding of the protein. At this elevated (nonpermissive) temperature, the heat-inducible N-degron module (and any protein or peptide attached at its C-terminus) is rapidly degraded in a cell in which the N-end rule pathway is operative. Also disclosed are DNA and protein fusion constructs, methods for screening for additional heat-inducible N-degron modules and methods for using the disclosed heat-inducible N-degron modules. Also disclosed are methods for inhibiting the degradation of a protein bearing an N-degron in which a low molecular mass, cell penetrating ligand is prebound to the protein.
Abstract:
A delivery vehicle is described that is capable of being specifically bound to and taken into targeted cells, delivering numerous physiological agents, particularly paramagnetic ions for magnetic resonance imaging (MRI) of the cells. The delivery vehicle comprises a polymeric molecule having a net positive charge complexed with another polymeric molecule having a net negative charge. Cell targeting moieties and physiological agents, including contrast agents and therapeutic agents, are attached to one or both of the polymeric molecules. In one embodiment, the polymeric molecule having a net negative charge is a nucleic acid. Thus, the delivery vehicles can be used in clinical protocols in which nucleic acids for gene therapy and agents for MRI contrast are co-transported to specific cells allowing medical imaging monitoring of nucleic acid delivery.