Abstract:
A microsphere-based analytic chemistry system is disclosed in which self-encoding microspheres having distinct characteristic optical response signatures to specific target analytes may be mixed together while the ability is retained to identify the sensor type and location of each sensor in a random dispersion of large numbers of such sensors in a sensor array using an optically interrogatable encoding scheme. An optical fiber bundle sensor is also disclosed in which individual microsphere sensors are disposed in microwells at a distal end of the fiber bundle and are optically coupled to discrete fibers or groups of fibers within the bundle. The identities of the individual sensors in the array are self-encoded by exposing the array to a reference analyte while illuminating the array with excitation light energy. A single sensor array may carry thousands of discrete sensing elements whose combined signal provides for substantial improvements in sensor detection limits, response times and signal-to-noise ratios.
Abstract:
The present invention provides a novel cross-reactive sensor system utilizing cross-reactive recognition elements. In the inventive system, each of said one or more cross-reactive recognition elements is capable of interacting with more than one species of liquid analyte of interest, whereby each of said one or more cross-reactive recognition elements reacts in a different manner with each of said one or more species of liquid analytes of interest to produce a detectable agent of each analyte of interest, whereby said detectable agent is analyzed and the information is processed for data acquisition and interpretation. In certain preferred embodiments, the detectable agent and/or change is detected directly, while in certain other preferred embodiments, the detectable agent and/or change is detected with the help of a transducing agent capable of relaying information about each detectable agent generated for each of said species of liquid analyte of interest, whereby said information is processed for data acquisition and interpretation. The present invention also provides method for the analysis of analytes comprising contacting one or more analytes with the inventive system described above.
Abstract:
The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.
Abstract:
A biosensor, sensor array, sensing method and sensing apparatus are provided in which individual cells or randomly mixed populations of cells, having unique response characteristics to chemical and biological materials, are deployed in a plurality of microwells formed at the distal end of individual fibers within a fiber optic array. The biosensor array utilizes an optically interrogatable encoding scheme for determining the identity and location of each cell type in the array and provides for simultaneous measurements of large numbers of individual cell responses to target analytes. The sensing method utilizes the unique ability of cell populations to respond to biologically significant compounds in a characteristic and detectable manner. The biosensor array and measurement method may be employed in the study of biologically active materials, in situ environmental monitoring, monitoring of a variety of bioprocesses, and for high throughput screening of large combinatorial chemical libraries.
Abstract:
The present invention is a photodeposition methodology for fabricating a three-dimensional patterned polymer microstructure. A variety of polymeric structures can be fabricated on solid substrates using unitary fiber optic arrays for light delivery. The methodology allows micrometer-scale photopatterning for the fabricated structures using masks substantially larger than the desired dimensions of the microstructure.
Abstract:
A microsphere-based analytic chemistry system is disclosed in which microspheres carrying different chemical functionalities may be mixed together while the ability is retained to identify the functionality on each bead using an optically interrogatable encoding scheme. An optical fiber bundle sensor is also disclosed in which the separate microspheres may be optically coupled to discrete fibers or groups of fibers within the bundle. The functionalies are encoded on the separate microspheres using fluorescent dyes and then affixed to wells etched in the end of the bundle. Thus, a single sensor may carry thousands of chemistries. Only those microspheres exhibiting reactions then need to be decoded to identify the corresponding functionality.
Abstract:
A fiber optic sensing device for measuring a chemical or physiological parameter of a body fluid or tissue is provided. To one end of the fiber is attached a polymer including a plurality of photoactive moieties selected from the group consisting of chromophores and lumophores, the photoactive moieties spaced apart so as to minimize chemical or physical interaction therebetween while optimizing the density of photoactive moieties. In one embodiment, a polymer chain is covalently bound to photoactive moieties through functional groups such as esters, amides, or the like. In a second embodiment, a polymer chain is inherently fluorescent and is formed from at least one monomeric unit. These devices are particularly useful as pH and oxygen sensors.
Abstract:
The present invention provides a unique fiber optic sensor which is able to conduct multiple assays and analyses concurrently using a plurality of different dyes immobilized at individual spatial positions on the surface of the sensor. The present invention also provides apparatus for making precise optical determinations and measurements for multiple analytes of interest concurrently and provides methods of detection for multiple analytes of interest which can be correlated with specific parameters or other ligands for specific applications and purposes.
Abstract:
An improved fiber optic sensor, sensing apparatus, and methods for making optical determinations are provided. The fiber optic sensor employs a fiber optic strand to convey light energy and at least one polymer matrix comprising a fluid erodible, continuous release polymer and a releasable reagent formulation able to react with a molecule or analyte of interest. The optic sensors and sensor construction has been demonstrated to be accurate, precise, and of long duration.
Abstract:
A microsphere-based analytic chemistry system and method for making the same is disclosed in which microspheres or particles carrying bioactive agents may be combined randomly or in ordered fashion and dispersed on a substrate to form an array while maintaining the ability to identify the location of bioactive agents and particles within the array using an optically interrogatable, optical signature encoding scheme. A wide variety of modified substrates may be employed which provide either discrete or non-discrete sites for accommodating the microspheres in either random or patterned distributions. The substrates may be constructed from a variety of materials to form either two-dimensional or three-dimensional configurations. In a preferred embodiment, a modified fiber optic bundle or array is employed as a substrate to produce a high density array. The disclosed system and method have utility for detecting target analytes and screening large libraries of bioactive agents.