Abstract:
A method for alkylating a hydrocarbon comprising at least one isoparaffin and at least one olefin by introducing liquid acid catalyst and the hydrocarbon into a high shear reactor, forming an emulsion comprising droplets comprising hydrocarbon in a continuous acid phase, wherein the droplets have a mean diameter of less than about 5 microns, introducing the emulsion into a vessel operating under suitable alkylation conditions whereby at least a portion of the isoparaffin is alkylated with the olefin to form alkylate, and removing a product stream comprising alkylate from the vessel. A system for carrying out the method is also disclosed.
Abstract:
Use of a high shear mechanical device in a process for production of starch by hydration and disruption of corn kernel particles in the presence of sulfur dioxide or bisulfite ions makes possible a decrease in mass transfer limitations, thereby enhancing starch production. A system for production of starch is also provided in which a high shear mixing device is configured to receive an aqueous corn slurry from a pump that is disposed between the reactor and a gaseous sulfur dioxide inlet of the high shear mixing device. The high shear mixing device is also configured to generate a fine dispersion of sulfur dioxide bubbles and small corn particles in the slurry. A reactor is configured to receive the output from the high shear mixing device and to provide for starch production.
Abstract:
A method for producing aniline or toluenediamine is disclosed which comprises forming a dispersion comprising hydrogen gas bubbles dispersed in a liquid medium comprising either nitrobenzene or dinitrotoluene, wherein the hydrogen gas bubbles have a mean diameter less than 1 micron; and subjecting the dispersion to hydrogenation reaction promoting conditions comprising pressure less than about 600 kPa and temperature less than about 200°C, whereby at least a portion of the nitrobenzene or dinitrotoluene is hydrogenated to form aniline or toluenediamine, respectively. A system for carrying out the method is also disclosed.
Abstract:
Use of a high shear mechanical device incorporated into a process for the production of cyclohexanol is capable of decreasing mass transfer limitations, thereby enhancing the cyclohexanol production process. A system for the production of cyclohexanol from air oxidation of cyclohexane, the system comprising a high shear device, the outlet of the high shear device fluidly connected to the inlet of a reactor; the high shear device capable of providing a dispersion of air bubbles within a liquid comprising cyclohexane, the bubbles having an average bubble diameter of less than about 100 microns.
Abstract:
Use of a high shear mechanical device in a process for production of starch hydrolysate by reacting starch with a hydrolytic agent makes possible a decrease in mass transfer limitations, thereby enhancing production of starch hydrolysate. A system for production of starch hydrolysate is also provided in which a reactor is configured to receive the output from a high shear device, which is configured to receive a starch and lysing reagent. The high shear device is configured to generate a fine dispersion or emulsion of lysing.
Abstract:
Methods and systems for the production of ethyl acetate are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and mixing of a carbonyl co-reactant (e.g. acetic acid, acetaldehyde) with ethanol. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time with existing catalysts.
Abstract:
Methods and systems for preparing dialkyl ketones are described herein. The methods and systems incorporate the novel use of a high shear device to promote dispersion and solubility of carbon monoxide and hydrogen with the olefins (e.g. ethylene) in a liquid solvent. The high shear device may allow for lower reaction temperatures and pressures and may also reduce reaction time.
Abstract:
A method for removing contaminant from feedwater by forming a dispersion comprising bubbles of a treatment gas in a continuous phase comprising feedwater, wherein the bubbles have a mean diameter of less than about 5 microns and wherein the treatment gas is selected from air, oxygen, and chlorine. A method for removing contaminants from a feedwater by subjecting a fluid mixture comprising feedwater and a treatment gas to a shear rate greater than 20,000 s-1 in a high shear device to produce a dispersion of treatment gas in a continuous phase of the feedwater. A system for treating feedwater to remove contaminants therefrom is also presented, the system comprising at least one high shear mixing device comprising at least one generator comprising a rotor and a stator separated by a shear gap; and a pump configured for delivering feedwater and treatment gas to the high shear mixing device.
Abstract:
A method for forming C2+ hydrocarbons by forming a dispersion comprising synthesis gas bubbles dispersed in a liquid phase comprising hydrocarbons in a high shear device, wherein the average bubble diameter of the synthesis gas bubbles is less than about 1.5 microns, introducing the dispersion into a reactor, and removing a product stream comprising C2+ hydrocarbons from the reactor. A system for converting carbon monoxide and hydrogen gas into C2+ hydrocarbons including at least one high shear mixing device comprising at least one rotor and at least one stator separated by a shear gap, wherein the high shear mixing device is capable of producing a tip speed of the at least one rotor of greater than 22.9 m/s (4,500 ft/min), and a pump configured for delivering a fluid stream comprising liquid medium to the high shear mixing device.
Abstract:
Use of a high shear mechanical device incorporated into a process for the production of sulfolene as a reactor device is capable of decreasing mass transfer limitations, thereby enhancing the sulfolene production process. A system for the production of sulfolene from butadiene and sulfur dioxide, the system comprising a reactor and an external high shear mixer the outlet of which is fluidly connected to the inlet of the reactor; the high shear mixer capable of providing a dispersion of sulfur dioxide gas bubbles within a liquid, the bubbles having an average bubble diameter of less than about 100μm.