Abstract:
An all-reflective optical system has a first (10) and second (12) reflecting assembly. The first reflecting assembly (10) includes an afocal three-mirror anastigmat (18, 20, 22) with one or more apertures (28 A-D) in the tertiary mirror (22) to enable light or energy to pass therethrough. Light or energy reflects from the second reflecting assembly (12) through the apertures (28 A-D) to provide simultaneous viewing of a scene by a plurality of instruments (34). The second reflecting assembly (12) includes a planar mirror which provides pointing and stabilization motions for all of the instruments simultaneously without degrading image quality or pupil registration.
Abstract:
A three-mirror anastigmat system has a plurality of focal lengths, fields of view or both reflected to its focal planes. The system includes a positive power primary mirror (10) and a negative power secondary mirror (12) transmitting an image of an object to be viewed to a plurality of tertiary mirrors (14 and 16) operating at various magnifications. The tertiary mirrors (14 and 16) provide the plurality of images with different or the same focal lengths and fields of view to the plurality of focal planes (22 and 24).
Abstract:
A non-relayed optical system is used off-axis in both aperture and field angle relative to an optical axis (32), and employs three reflective lens elements (34, 36, 38). The system is useful for viewing radiation from a distant object, the radiation allowed to enter the system through an opening in a real and accessible entrance pupil (44) that is disposed in front of a concave primary mirror (34). Because the entrance pupil of the system is real and not virtual, the aperture stop of the system is coincident with the entrance pupil, resulting in a significant reduction in beam wander about the front of the optical system. The real entrance pupil of the system also allows the system to be utilized for applications where it is required that the system view distant objects by means of a small viewing port, window or object space scan mirror.
Abstract:
Various embodiments provide an optical system including a first lens group having a plurality of lenses; a second lens group having a plurality of lenses, the second lens group being disposed adjacent the first lens group; a third lens group having a plurality of lenses, the third lens group being disposed adjacent the second lens group; and a detector disposed behind the third lens group. A pupil of the optical system is located external to the first lens group, the second lens group and the third lens group. The second lens group is movable respective to the first lens group and the third lens group so as to convert a configuration of the optical system between a narrow field of view (NFOV) configuration and a wide field of view (WFOV) configuration.
Abstract:
A reflective optical form that has both a telecentric image and a real entrance pupil. In one example, a non-relayed optical imaging system includes a real entrance pupil configured to admit a beam of electromagnetic radiation, an image plane, and a reflective triplet including a negative primary mirror, a positive secondary mirror optically coupled to the primary mirror, a negative tertiary mirror optically coupled to the secondary mirror, the reflective triplet configured to receive the beam of electromagnetic radiation from the real entrance pupil and to focus the beam of electromagnetic radiation onto the image plane to form a telecentric image at the image plane.
Abstract:
A radiation shielded optical system. In one example, a radiation shielded optical system includes a labyrinthine housing having an entrance and defining a cavity, a detector positioned within the cavity of the housing, the housing configured to provide substantially 4-pi steradian radiation shielding for the detector. The optical system further includes a rear-stopped optical sub-system having a rear aperture stop positioned proximate the entrance of the housing and configured to direct an optical beam through the rear aperture stop and the entrance into the housing, and a fold mirror positioned within the housing and configured to reflect the optical beam onto the detector.
Abstract:
A dispersive infrared spectrometer in which only a minimum number of optical components, for example, the detector sub-system only, are housed within a cold/cryogenic dewar and the remaining optical components are at ambient temperature during operation of the spectrometer. In one example, the spectrometer includes a slit substrate with a highly reflective surface, and the optical components of the spectrometer are configured and arranged such that for all in-band wavelengths, substantially all off-slit optical paths in the detector field of view are retro-reflected off the reflective surface of the slit substrate into the cryogenic dewar.
Abstract:
An all-reflective afocal optical system including an aspheric beam steering mirror positioned at an exit pupil of the afocal optical system. In one example, an all-reflective afocal optical imaging system includes a sensor, a afocal optical apparatus including a plurality of minors optically coupled together and configured to receive light rays through an entrance pupil of the afocal optical imaging system and to substantially collimate the light rays to provide a collimated optical beam to an exit pupil, and an aspheric beam steering mirror positioned at the exit pupil and configured to receive the collimated optical beam and to direct the collimated optical beam to the sensor.
Abstract:
A jitter sensing mechanism for a gimbaled optical sensor system. In one example, the jitter sensing mechanism includes a faceted retro-minor configured to allow a double-pass line-of-sight monitoring beam to sense line-of-sight jitter in a multi-axis gimbaled optical sensor system where the inner-most gimbal axis includes a 2:1 gain mirror.
Abstract:
Various embodiments provide an optical system including a first lens group including a plurality of lenses, the first lens group being configured to correct for lateral chromatic aberration; and a second lens group including a plurality of lenses, the second lens group being configured to correct for axial chromatic aberration, the second lens group being disposed adjacent the first lens group. The optical system further includes a detector disposed behind the second lens group; a mechanism for switching a configuration of the optical system between a narrow field of view (NFOV) configuration and a wide field of view (WFOV) configuration; and a ray path steering system disposed in front of the first lens group, the ray path steering system comprising a pair of counter-rotating grisms configured to enhance a field of regard of the optical system. The optical system also includes a stabilization system configured to suppress image jitter, the stabilization system including a mechanism for decentering at least one lens in the first lens group or in the second lens group orthogonal to an optical axis of the optical system. A pupil of the optical system is located external to the first and second lens groups for location of a cold shield within a cryo-vac Dewar enclosing the detector.