Abstract:
Systems and methodologies are described that facilitate performing antenna virtualization in a wireless communication environment. A set of physical transmit antennas can be partitioned into a plurality of groups of physical transmit antennas. Further, a precoding vector for a particular group of physical transmit antennas from the plurality of groups of physical transmit antennas can be formulated. Moreover, the particular group of physical transmit antennas can form a particular virtual antenna. By way of another example, a disparate precoding vector for a disparate group of physical transmit antennas from the plurality of groups of physical transmit antennas can be formulated, and the disparate group of physical transmit antennas can form a disparate virtual antenna. The precoding vector can be applied to a signal for transmission over the particular virtual antenna, and the disparate precoding vector can be applied to a disparate signal for transmission over the disparate virtual antenna.
Abstract:
A system and method for facilitating resource management in OFDM systems is provided. The system permits different and flexible resource cell metric operations levels (e.g. uplink load management, admission control, congestion control, signal handoff control) for different sub-bands. For the uplink load management, there are multiple distinct load operation points (e.g. IoT, RoT) per sub-band group instead of the same operation level across the entire available band. The sub-band groups encompass the entire band. The facilitation system also comprises a variety of transmitting protocols, command increment variable stepsize methods and robust command response methods. The system thus provides more flexible reverse link resource management and more efficient utilization of the bandwidth.
Abstract:
System (s) and method (s) are provided for inter-cell power control in th e presence of fractional frequency reuse in a wireless communication system. Transmission power control of a terminal (210); and ensuing inter-cell inte rference mitigation, is accomplished by receiving load indicators (23Oi) fro m non-serving sectors (246i), decoding those load indicators corresponding t o the non-serving sectors that operate in the same frequency bands as the te rminal, and adjusting the transmission power according to the states of the decoded load indicators in conjunction with the associated non-serving secto r forward link signal-to-interference and-noise ratio at the terminal. The s tates of the load indicators reflect magnitudes of interference metrics with respect to threshold values. Load indicators can also be conveyed by the no n-serving sector to4 a base station (260) serving the terminal through a bac khaul (250) communication, and said base station can schedule an adjusted tr ansmission power for the terminal.
Abstract:
User equipment (UE) associated with synchronous networks operate in a synchronous mode while UEs associated with asynchronous networks operate in an asynchronous mode. When operating in a synchronous mode, a UE can significantly improve performance of synchronization signal detection, data decoding, and tracking loop management by using the interference cancellation (IC) techniques that are not available in an asynchronous mode of operation. Obtaining synchronization indicators and determining the synchronization status of the current network by UE is disclosed. The determination may be based on the synchronization indicator, whether detected through signal detection, signal measurements, signal analysis, or the like.
Abstract:
Systems and methodologies are described herein that facilitate improved modulation and coding techniques for a multiple-in multiple-out (MIMO) communication system. As described herein, data to be transmitted over a set of physical layers (e.g., corresponding to antennas, beams, etc.) can be processed such that encoding is performed on a per-codeword basis and modulation is performed on a per- layer basis, thereby mitigating performance degradation experienced by traditional systems due to layer imbalance. As further described herein, per-codeword code rate parameters and per-layer modulation parameters can be signaled to a device in various manners, such as through modulation and coding scheme (MCS) signaling, explicit code rate and/or modulation scheme signaling, relative code rate and/or modulation scheme signaling, or the like.
Abstract:
Un procedimiento de comunicación inalámbrica, que comprende: recibir una concesión de enlace descendente (708) para planificar transmisiones de datos, donde la concesión de enlace descendente incluye un comando de control de potencia de transmisión, TPC, (712) y un índice de asignación de enlace descendente, DAI, (710) para una subtrama de enlace ascendente; determinar un valor para el comando TPC como un indicador de recurso de acuse de recibo/acuse de recibo negativo, ACK/NACK, para un recurso de canal de control de enlace ascendente en función de un valor del DAI; caracterizado por: transmitir (810), durante la subtrama de enlace ascendente, uno o más elementos de retroalimentación de ACK/NACK (720) y una solicitud de planificación, SR, usando el recurso de canal de control de enlace ascendente, donde el ACK/NACK y la SR se codifican conjuntamente, con el bit de SR añadido al final.
Abstract:
METHODS AND APPARATUSES ARE PROVIDED FOR DETERMINING CYCLIC SHIFT (CS) VALUES AND/OR ORTHOGONAL COVER CODES (OCC) FOR A PLURALITY OF DEMODULATION REFERENCE SIGNALS (DM-RS) TRANSMITTED OVER MULTIPLE LAYERS IN MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) COMMUNICATIONS. A CS INDEX CAN BE RECEIVED FROM A BASE STATION (102, 202, 302, 702, 1002, 1110) IN DOWNLINK CONTROL INFORMATION (DCI) OR SIMILAR SIGNALING. BASED AT LEAST IN PART ON THE CS INDEX, CS VALUES FOR THE PLURALITY OF DM-RSS CAN BE DETERMINED. IN ADDITION, OCC CAN BE EXPLICITLY SIGNALED OR SIMILARLY DETERMINED FROM THE CS INDEX AND/OR A CONFIGURED CS VALUE RECEIVED FROM A HIGHER LAYER. IN ADDITION, CONTROLLING ASSIGNMENT OF CS INDICES AND/OR OCC CAN FACILITATE PROVIDING ORTHOGONALITY FOR COMMUNICATIONS FROM PAIRED DEVICES IN MULTIUSER MIMO.
Abstract:
Un procedimiento de comunicación inalámbrica, que comprende: recibir (610) una configuración de la capa superior de una pluralidad de conjuntos de recursos de ACK/NAK para la transmisión de enlace ascendente correspondiente, al menos, a una portadora secundaria de componentes de enlace descendente en una configuración de múltiples portadoras; recibir (612) un indicador de capa física de recursos de ACK/NAK en la pluralidad de conjuntos, en el que el indicador de capa física comprende un índice para la pluralidad de conjuntos; recibir una transmisión de datos de enlace descendente en una portadora primaria de componentes y la al menos una portadora secundaria de componentes de enlace descendente; determinar los primeros recursos de ACK/NACK basados en un elemento de canal de control, CCE, de la portadora primaria de componentes; y determinar los segundos recursos de ACK/NACK basados en un elemento de cada conjunto correspondiente al índice; enviar información de ACK/NAK para la transmisión de datos de enlace descendente en un canal físico de control de enlace ascendente usando los recursos de ACK/NAK.