Abstract:
A wireless device may selectively add padding to an end of a data transmission in order to provide adequate time for a receiving device to process the transmitted data and transmit feedback related to the transmitted data. A wireless device may identify a total amount of data capable of being transmitted in a transmission, and determine a number of data bits to be transmitted in the transmission. An amount of padding may be selected based on a proportion of the total amount of data capable of being transmitted and the number of data bits. In some examples, a preamble for a feedback transmission may be transmitted concurrently with processing of the received transmission.
Abstract:
An apparatus includes an azimuth adjuster coupled between a motor and a directional antenna. Motor rotation causes the azimuth adjuster to rotate the antenna about an azimuthal axis. The motor rotation also causes an elevation adjuster to rotate, which causes a screw mechanism to modify an elevation angle by pivoting the antenna about an elevational axis. To aim the directional antenna, a body-direction vector of a movable body with the antenna attached thereto is determined. Based on an elevational relationship between the body-direction vector and a satellite-direction vector, the elevation adjuster modifies the elevation angle of the antenna by rotating the motor to achieve full-turn amounts to pivot the antenna. The azimuth adjuster modifies an azimuth angle of the antenna based on an azimuthal relationship between the body- direction vector and the satellite-direction vector by rotating the motor to achieve partial- turn amounts of the antenna.
Abstract:
A method includes sequentially transmitting a ranging signal a predetermined number of times in different frequency bands to form a wideband ranging signal. The method further includes receiving a range estimate based at least in part on the wideband ranging signal.
Abstract:
Methods, systems, and devices are described for managing wireless communications in a machine-to-machine (M2M) wireless Wide Area Network (WAN). A physical layer frame is generated. The frame being used for wireless M2M communications on a forward link in the M2M wireless WAN. The frame including no more than three channels. The physical layer frame including a first channel including paging channel, a second channel including a traffic channel, and a third channel including an acknowledgment (ACK) channel. A time division multiplexing (TDM) operation is performed on pilot symbols and data symbols to obtain a TDM pilot burst. At least one TDM pilot burst is inserted into each channel of the physical layer frame. The physical layer frame is transmitted on the forward link at a low data rate.
Abstract:
Techniques are provided which may be implemented in various methods, apparatuses, and/or articles of manufacture for use by a device that is operable in a plurality of modes, including "higher power mode" and a "lower power mode". A timing circuit may be set based, at least in part, on a phase value obtained from a signal from a ground-based transmitter, and operation of the device may be selectively transitioned to a lower power mode wherein the device uses the timing circuit. In certain example implementations, operation of the device to the lower power mode may be selectively transition and based, at least in part, on a determination that one or more attribute values satisfy a profile test indicating that the electronic device is likely to be within a characterized environment, and/or a determination that the electronic device is likely to be in a constrained motion state.
Abstract:
A method an apparatus for selecting a forward link and return link data rate for a constant power, variable data rate two-way, mobile satellite communications link. The forward link and return link signal strength (in the form of carrier power to noise power spectral density ratio) is measured, cataloged, and the values are used for the data rate selection. In addition, a ping can be sent by the network operation center to the mobile unit and the response to the ping is used for updating the information of both forward link and return link signal strength, so the chance of wrong data rate selection can be reduced. Multiple re-transmission attempts combined with gradually increased re-transmission margin ensures the proper data rate decision can be eventually achieved even with occasionally inaccurate signal strength information.
Abstract:
Certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus generally includes a processing system configured to generate a data frame based on a compressed data frame format and to include control information in at least one field of the data frame, wherein the at least one field is not specified in the compressed data frame format and an interface for outputting the data frame for transmission. Another example apparatus generally includes a processing system configured to generate a frame having a first one or more bits indicating whether the frame has a compressed format and a second one or more bits indicating which of one or more fields are absent if the frame has a compressed format and an interface for outputting the frame for transmission.
Abstract:
Systems, methods, and devices for concurrently allowing station-to- station transmissions and access point-to-station transmissions are described herein. A station requests an Access Point for an available channel frequency to coduct station-tostation communications. The AP replies with a coordination message indicating that two distinct channel frequencies are allowed for station-to-station communications and for AP-to-station communcations. AP-to-station and station-to- station communications may therefore coexist.
Abstract:
Methods and apparatus for transmission of configuration information in a wireless communication network (100). A method is provided for transmitting a configuration message (122) to a plurality of terminals (106-118) in a wireless network (100). The method includes assigning a slot in a transmission to contain the configuration message (122), and transmitting a marker (124) to identify the slot in the transmission to the plurality of terminals. The method also includes transmitting the configuration message (122) in the slot of the transmission using a high data rate so that air-link resources are conserved.
Abstract:
A system and method for determining a signal propagation delay between a transmitter and a receiver, and for adjusting a transmission time based on the propagation delay. A central station inserts a marker into a transmitted signal at a time corresponding to a received timing signal. The MCT receives the signal from the central station and determines a time difference between receipt of the marker and the detection of the time interval event. A transmission by the MCT is adjusted by an amount of time proportional to the time difference.