Abstract:
고효율무선주파수분할멀티플렉싱을위한시스템들, 방법들및 디바이스들이제공된다. 방법은, 액세스포인트에서, 제 1 및제 2 무선디바이스중 적어도하나와, 무선매체를예비하는적어도하나의프레임을교환하는단계를포함한다. 방법은, 제 1 무선디바이스로부터무선주파수들의제 1 세트상에서제 1 통신을수신하는단계를더 포함한다. 방법은, 제 2 무선디바이스로부터무선주파수들의제 2 세트상에서, 제 1 통신과적어도부분적으로동시에제 2 통신을수신하는단계를더 포함한다. 방법은, 제 1 및제 2 통신의적어도하나의확인응답을송신하는단계를더 포함한다. 제 1 세트및 제 2 세트는, 제 1 및제 2 무선디바이스들둘 모두에의한사용을위해이용가능한무선주파수들의세트의상호배타적서브세트들이다.
Abstract:
실시예들에서, 무선 수신기는 펌웨어에 의해 제어되는 하드웨어-기반 고속 푸리에 변환(FFT) 엔진을 사용한다. FFT 엔진은 작업 목록에 저장된 작업들을 실행시킨다. 각각의 작업은 신호의 상이한 일부분, 예컨대 하나 이상의 직교 주파수 분할 변조(OFDM) 심볼들과 연관된다. 각각의 작업은, 상기 엔진이 상기 신호의 상기 연관된 일부분, 상기 일부분에 대한 포인터, 그리고 출력을 저장하기 위한 메모리에 대한 다른 포인터를 프로세싱하도록 구성하기 위해 FFT 엔진을 위한 구성 정보를 포함할 수 있다. 상기 작업 목록은 펌웨어 제어될 수 있다. 작업 목록으로부터 작업들을 판독하여 실행시키기 위해 펌웨어에 의해 구동되는 구성가능한 하드웨어 파트로 상기 FFT를 분할하는 것은 FFT 프로세스의 속도를 높일 수 있고, 더욱 유연성 있게 한다. 서브-캐리어들을 그들의 에너지들에 따라 정렬하기 위한 하드웨어 비콘 정렬기가 상기 FFT 엔진에 커플링될 수 있다.
Abstract:
무선 통신 시스템에서 확인응답 메시지를 전송하기 위한 방법이 개시된다. 제 1 신호는 송신기로부터 제 2 신호가 수신되기 이전에 수신된다. 디코딩된 제 1 데이터는 제 1 신호로부터 추출된다. 제 3 신호는 디코딩된 제 1 데이터를 인코딩하고 변조함으로써 생성된다. 제 2 신호는 제 2 심벌들을 생성하기위해 복조된다. 제 3 신호 및 제 2 심벌들은 코릴레이팅된다.
Abstract:
PROBLEM TO BE SOLVED: To provide an apparatus and a method for enhancing performance in a wireless communication system using beamforming transmission.SOLUTION: The method can include determining channel information for a user, and assigning a user device to at least one of a wide beam or at least one predetermined narrow beam. Further, the method includes assigning another user device during the same time period to at least some overlapping frequencies and the other one of the wide beam and the at least one predetermined narrow beam as the user device. Moreover, the at least one predetermined narrow beam includes a cluster of narrow beams and another cluster of narrow beams. In this case, the first cluster and the another cluster do not overlap.
Abstract:
PROBLEM TO BE SOLVED: To provide methods and apparatuses for decoding code words received over a MIMO channel.SOLUTION: A cost function is computed for each constellation point of an Mth rank or spatial layer, and Nof those constellation points having minimum cost are preserved as candidate points, where Nis a parameter specified to the decoding algorithm. In addition, a cost function may be computed for all possible transitions from the Ncandidate points of the Mth rank to all possible constellation points of the (M-1)th spatial layer, and Aof those transitions having minimum cost are preserved as candidate points. The process is repeated for all spatial layers, resulting in the identification of Ncandidate code words and their associated cost functions.
Abstract:
PROBLEM TO BE SOLVED: To provide fair scheduling for all hops from a source node to a target node in a multi-hop network. SOLUTION: Flow-based scheduling of a wireless multi-hop network is rate-controlled multi-hop scheduling, or power-controlled multi-hop scheduling. Selected scheduling provides the minimized/maximized fairness in the whole of all flows within a wireless network. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide new architectures and processes which can flexibly utilize a wide variety of multi-channel transmit/receive technologies such as SIMO, MIMO and SDMA signals.SOLUTION: The architecture includes a control module 640 and a demodulation engine 650. The control module includes a set of one or more control fields. The demodulation engine includes a spatial whitening module 721, a minimum mean square estimation (MMSE) module 738, at least one first maximal ratio combining (MRC) module 732, and at least one multiplexer 742. Further, the multiplexer is coupled to an instruction module and controlled based on the control fields to select at least one of the MMSE module and the MRC module.
Abstract:
PROBLEM TO BE SOLVED: To provide a system and method for facilitating equalization of received signals in a wireless communication environment.SOLUTION: Based upon a plurality of pilot symbols, channel estimation and interference estimation are performed to obtain separate channel estimates and interference estimates for each received tile (602). A subset or sample set of modulation symbols is selected for equalizer matrix computation (604), and equalizer matrices are obtained by computation (606). Then, equalization matrices are generated for modulation symbols not included within the sample set utilizing interpolation (608). The obtained equalizer matrices are used to equalize modulation symbols (610).
Abstract:
PROBLEM TO BE SOLVED: To provide a method of efficiently sending signals on a configurable CDMA control segment.SOLUTION: To send signals, transmission parameters for the CDMA control segment 300 for a serving sector are determined. The enabled CDMA signaling channels for a terminal and the average transmission interval for each enabled CDMA signaling channel are determined. For each frame in which the CDMA control segment 300 is sent, the signaling channels to be sent on the CDMA control segment 300 in that frame are determined. The signals for each signaling channel are processed (e.g., encoded, channelized, scaled, and scrambled). The processed signals for all signaling channels are combined and mapped to a time-frequency region used for the CDMA control segment 300 in the frame.
Abstract:
PROBLEM TO BE SOLVED: To provide techniques to enhance the performance in a wireless communication system, using segments called subbands and using precoding.SOLUTION: The bandwidth for transmission to an access terminal is constrained to a preferred bandwidth which is less than the bandwidth available for transmission to an access terminal. Precoding information related to the subcarriers within the constrained bandwidth provides feedback about the forward link channel properties related to different subbands and may be fed back on a channel associated with the bandwidth.