Abstract:
Apparatuses and methods are disclosed for delivering queued downlink (DL) data from a second wireless device to a plurality of first wireless devices. In accordance with example embodiments, the second wireless device may determine, for each of the plurality of first wireless devices, a presence of a corresponding set of queued DL data, may transmit a beacon frame identifying which of the plurality of first wireless devices has queued DL data, and may transmit, to each of the identified first wireless devices, permission to request delivery of queued DL data. Next, the second wireless device may receive, from each of the identified first wireless devices, a request for delivery of the queued DL data. Then, the second wireless device may concurrently transmit, to each of the identified first wireless devices, the corresponding set of queued DL data.
Abstract:
In a multiple-input, multiple-output system, the wireless node's receive chain demodulation function is enhanced to include phase tracking. Instead of performing phase tracking during the data symbols which is cumbersome for very high throughput wireless networks, the VHT Long Training Fields (LTFs) embedded in the preamble of a frame are used for phase tracking. Single stream pilot tones are added during the transmission of VHT-LTFs. This is exploited on the receive side to be able to estimate the channel using the pilot tones in the first set of the Long Training Fields. Second set of the Long Training Fields are then used to estimate the phase of the pilot tones using the estimated channel. The phase estimation so obtained is continuously applied to other received data tones throughout the VHT-LTFs of the data symbols. The phase errors due to PLL mismatches and phase noise are reduced at reception, leading to better signal to noise ratio for different levels of parts per million drift and offset in frequency. Further, MIMO channel estimation is more accurate, which improves the overall wireless network when this accurate MIMO channel estimation data participates in calibration and handshake between wireless nodes.
Abstract:
A wireless transmitter can include a plurality of bandwidth modules, each bandwidth module processing data based on a predetermined frequency band. In one embodiment, such a wireless transmitter can include encoding components for receiving transmit data and generating encoded data. A multiple-input multiple-output (MIMO) stream parser can receive the encoded data and generate a plurality of MIMO streams. A first module parser coupled to a first MIMO stream can generate a first plurality of partial MIMO streams. A first bandwidth module can include a first interleaver that interleaves bits of the first partial MIMO stream and generates first interleaved data. A second bandwidth module can include a second interleaver that interleaves bits of the second partial MIMO stream and generates second interleaved data. A first inverse fast Fourier transform (IFFT) unit can combine and process the first and second interleaved data and generate a first transmission MIMO stream.
Abstract:
A first combination of frequency bands is selected for transmitting a first data packet, and a second, different combination of frequency bands is selected for transmitting a second data packet. A data stream is divided into a first set of data and a second set of data. The first set of data is allocated to the first combination of frequency bands, and the second set of data is allocated to the second combination of frequency bands.
Abstract:
A beacon message is wirelessly transmitted from a first device. The first device receives a first response to the beacon message, wherein the first response includes identification values associated with a personal identification device. The first device communicates with a second device associated with the personal identification device. The personal identification device is authenticated based, at least in part, on the identification values and the communication with the second device.
Abstract:
A power amplifier system including a composite digital predistorter (DPD) ensuring optimized linearity for the power amplifier is described. In this system, a digital-to-analog converter (DAC), an analog filter, a first mixer, and the power amplifier are serially coupled to the composite DPD. A second mixer, a receive gain block, and an analog-to-digital converter (ADC) are serially coupled to the output of the power amplifier. A DPD training component is coupled between the inputs of the composite DPD and the ADC. The composite DPD includes a memory-based DPD, e.g., a memory polynomial (MP) DPD, a memoryless-linearizing DPD, e.g., a look-up table (LUT) DPD, and two multiplexers.
Abstract:
A wireless device may be configured to operate in one of two modes where each mode uses a different channel list to perform operations in accordance with the IEEE 802.11 standard. In a first mode, the wireless device operates as an access point that sets up channels using one channel list in order to facilitate communications within a basic service set (BSS). In a second mode, the wireless device uses a second channel list to operate as a station and scan for a BSS. The first channel list contains a subset of the channels contained in the second channel list. The channels in each respective channel list may be reconfigured to adapt to changes in the configuration of a BSS and the devices communicating therein.
Abstract:
A wireless device may be configured to operate in one of two modes where each mode uses a different channel list to perform operations in accordance with the IEEE 802.11 standard. In a first mode, the wireless device operates as an access point that sets up channels using one channel list in order to facilitate communications within a basic service set (BSS). In a second mode, the wireless device uses a second channel list to operate as a station and scan for a BSS. The first channel list contains a subset of the channels contained in the second channel list. The channels in each respective channel list may be reconfigured to adapt to changes in the configuration of a BSS and the devices communicating therein.