Abstract:
Embodiments of the present invention provide systems and methods for automatic amplifier gain profile control, including a method for automatically configuring a variable gain profile amplifier according to received input and a variable gain profile amplification system. Further, embodiments of the present invention provide systems and methods for increased gain profile accuracy, including methods and systems to reduce the effects of temperature and/or process variations on the gain profile of an amplifier.
Abstract:
Systems and methods for demodulating a plurality of contiguous channels contained within a bandlimited portion of a radio-frequency (RF) input signal are provided. In an embodiment, the bandlimited portion of the RF input signal is down-converted to baseband. After down-conversion, the bandlimited portion overlaps at baseband with a mirror image of the bandlimited portion. The plurality of contiguous channels within the down-converted signal similarly overlap at baseband and subsequently occupy a bandwidth substantially equal to half that required before down-converting. Image rejection is performed in the digital domain to recover each of the plurality of overlapping channels.
Abstract:
A method and apparatus is disclosed to extend a dynamic input range of an analog to digital converter (ADC). A composite ADC may include one or more ADCs. The one or more ADCs compare a signal metric of an analog input signal to quantization levels to produce intermediate digital output signals using one or more non-clipping input values. The composite ADC may select among the one or more intermediate digital output signals based on the signal metric of the analog input signal to produce a final digital output.
Abstract:
A programmable attenuator includes a resistor ladder having a plurality of taps to provide a coarse gain control. Coupled to each tap is a plurality of switches. Control logic activates or deactivates individual switches in the plurality of switches to provide a fine gain control. More specifically, a set of activated switches provides fine gain control by determining an overall attenuation level interpolated between an adjacent pair of taps.
Abstract:
A bandpass filter includes a plurality of resonators. An input pin is connected to a first resonator of the plurality of resonators. An output pin is connected to a second resonator of the plurality of resonators. The first and second resonators are magnetically coupled to each other. The first and second resonators are coupled to other resonators using mixed coupling. The other resonators are coupled to each other using electric coupling.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL, control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for-changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
An apparatus provides a local oscillator signal based on a selected channel of an RF input signal. For example, the apparatus can set a frequency of the local oscillator signal based on the selected channel. Digital circuitry can be used to generate the local oscillator signal. For instance, the digital circuitry can provide a digital representation of the local oscillator signal. A DAC can convert the digital representation to an analog signal. Other circuitry can provide first and second quadrature components of the local oscillator signal, based on the analog signal.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL, control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
Circuitry to remove switches from signal paths in integrated circuit programmable gain attenuators Programmable gain attenuators and programmable gain amplifiers commonly switch between signal levels using semi-conductor switches. Such switches may introduce non-linearities in the signal, By isolating the switches from the signal path linearity of the PGA can be improved.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.