Abstract:
A component for a gas turbine engine includes a wall and a cooling hole. The wall has a first surface and a second surface. The second surface is exposed to hot gas flow. The cooling hole extends through the wall. The cooling hole includes a metering section extending from an inlet in the first surface of the wall to a transition, a diffusing section extending from the transition to an outlet in the second surface of the wall, a cusp extending from the transition along the metering section of the cooling hole toward the inlet.
Abstract:
A gas turbine engine component having a cooling passage (106 includes a first wall defining an inlet (110) of the cooling passage (106), a second wall generally opposite the first wall and defining an outlet (116) of the cooling passage (106), a metering section (112) extending downstream from the inlet (110), and a diffusing section (114) extending from the metering section (112) to the outlet (110). The metering section (112) includes an upstream side (120) and a downstream side (122A) generally opposite the upstream side (120). At least one of the upstream and downstream sides (120, 122A) includes a first passage wall (128) and a second passage wall (130) where the first and second passage walls (128, 130) intersect to form a V-shape.
Abstract:
A component includes a first wall section (82), a second wall section (84) spaced from the first wall section (82), a plurality of branches (86) between the first wall section (82) and the second wall section (84), and a heat transfer device (90) disposed either between adjacent branches (86) of the plurality of branches (86) or inside at least one branch (86) of the plurality of branches (86).
Abstract:
Plated polymeric gas turbine engine parts and methods for fabricating lightweight plated polymeric gas turbine engine parts are disclosed. The parts include a polymeric substrate plated with one or more metal layers. The polymeric material of the polymeric substrate may be structurally reinforced with materials that may include carbon, metal, or glass. The polymeric substrate may also include a plurality of layers to form a composite layup structure.
Abstract:
A gas turbine engine component subjected to a flow of high temperature gas includes a wall having first and second surfaces and a cooling hole extending through the wall. The cooling hole includes an inlet located at the first surface, an outlet located at the second surface, a metering section extending downstream from the inlet, and a diffusing section extending from the metering section to the outlet. The diffusing section includes a first lobe diverging longitudinally and laterally from the metering section and having a first downstream end adjacent the outlet and spaced from the inlet by a first distance, a second lobe diverging longitudinally from the metering section and having a second downstream end adjacent the outlet and spaced from the inlet by a second distance different from the first, and a transition region positioned between the lobes, the transition region having a third downstream end adjacent the outlet.
Abstract:
A lubricant tank includes a lubricant tank discharge passageway at least partially within the lubricant tank body, a porous media mounted within the lubricant tank body.
Abstract:
A gas turbine engine component includes a wall having first and second wall surfaces and first and second cooling holes extending through the wall. The first and second cooling holes each include an inlet located at the first wall surface, an outlet located at the second wall surface, a metering section extending downstream from the inlet and a diffusing section extending from the metering section to the outlet. Each diffusing section includes first and second lobes, each lobe diverging longitudinally and laterally from the metering section. The outlets of each cooling hole include first and second lateral ends and a trailing edge. One of the lateral ends of the outlet of the first cooling hole and one of the lateral ends of the outlet of the second cooling hole meet upstream of the trailing edge of the first cooling hole and the trailing edge of the second cooling hole.
Abstract:
A gas turbine engine includes a wall having first and second wall surfaces and a cooling hole extending through the wall. The cooling hole includes an inlet located at the first wall surface, an outlet located at the second wall surface, a metering section extending downstream from the inlet and a diffusing section extending from the metering section to the outlet. The diffusing section includes a first lobe diverging longitudinally and laterally from the metering section, a second lobe diverging longitudinally and laterally from the metering section, an upstream end located at the outlet, a trailing edge located at the outlet opposite the upstream end and generally opposite first and second sidewalls. Each sidewall has an edge extending along the outlet between the upstream end and the trailing edge. Each edge diverges laterally from the upstream end and converges laterally before reaching the trailing edge.
Abstract:
A gas turbine engine component includes a gas path wall having a first and second opposing surfaces and a baffle positioned along the gas path wall. The baffle has impingement holes for directing cooling fluid onto the first surface of the gas path wall. A cooling hole is formed in the gas path wall and extends from a metering section having an inlet in the first surface through a transition to a diffusing section having an outlet in the second surface. A longitudinal ridge extends along the cooling hole between the transition and the outlet. The longitudinal ridge divides the diffusing section of the cooling hole into first and second lobes.