Abstract:
An exemplary elevator input device includes a passenger interface configured to allow a passenger to place a call to indicate a desired elevator service. The elevator input device includes a controller configured to interpret any passenger input regarding desired elevator service. The controller identifies which of a plurality of elevator cars will be able to provide the desired elevator service according to a predetermined criterion. The plurality of elevator cars considered by the controller includes every elevator car that is capable of serving the call. The controller is also configured to assign the call to the identified elevator car.
Abstract:
One or more elevators can be more efficiently controlled by considering the then-current spatial capacity of the elevator. Camera images or other sensor data indicative of the occupied space in the elevator are received and processed by a control device to determine whether or not the elevator should stop at a requested floor. If the elevator is determined to lack space for additional passengers, then the elevator can bypass the requested stop and proceed without delay. If space remains, however, the elevator can stop to accommodate additional passengers. Measured spatial capacity can also be used to coordinate the actions of multiple elevators operating within a building.
Abstract:
In a method for controlling an elevator system, hints relating to potential elevator passengers are received from at least one observation point connected to the elevator system. Based on the hints, forecasts relating to potential elevator passengers are prepared, on the basis of which forecasts one or more anticipatory control actions are executed.