Abstract:
Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly adaptable for encapsulation of laser targets.
Abstract translation:细胞尺寸不大于2μm的低密度微孔泡沫体和通过将乙酸纤维素溶解在丙酮溶剂中制备的方法,将溶液凝胶保持在0-10℃的水浴中一段选定时间 时间允许杂质扩散出来,冷冻凝胶,然后冷冻干燥,其中水和溶剂升华,凝胶结构固化成低密度微孔泡沫。 泡沫体的密度为0.065〜0.6×10 3 kg / m 3,电池尺寸为0.3〜2μm左右。 小泡沫泡沫特别适用于激光靶的封装。
Abstract:
Foam encapsulated laser fusion targets are made by positioning a fusion fuel-filled sphere within a mold cavity of suitable configuration and dimensions, and then filling the cavity with a material capable of producing a low density, microcellular foam, such as cellulose acetate dissolved in an acetone-based solvent. The mold assembly is dipped into an ice water bath to gel the material and thereafter soaked in the water bath to leach out undesired components, after which the gel is frozen, then freeze-dried wherein water and solvents sublime and the gel structure solidifies into a low-density microcellular foam, thereafter the resulting foam encapsulated target is removed from the mold cavity. The fuel-filled sphere is surrounded by foam having a thickness of about 10 to 100 .mu.m, a cell size of less than 2 .mu.m, and density of 0.065 to 0.6 .times. 10.sup.3 kg/m.sup.3. Various configured foam-encapsulated targets capable of being made by this encapsulation method are illustrated.
Abstract translation:泡沫包封的激光熔化靶是通过将熔融填充的填充球定位在合适的构造和尺寸的模腔内,然后用能够产生低密度微孔泡沫的材料(例如溶解在 丙酮类溶剂。 将模具组件浸入冰水浴中以凝胶化材料,然后在水浴中浸泡以浸出不需要的组分,然后将凝胶冷冻,然后冷冻干燥,其中水和溶剂升华,凝胶结构固化成 低密度微孔泡沫,然后将所得的泡沫包封的目标物从模腔中除去。 充满燃料的球体由具有约10至100μm厚度的泡沫,细胞尺寸小于2μm,密度为0.065至0.6×10 3 kg / m 3的泡沫包围。 示出了能够通过该封装方法制造的各种配置的泡沫封装的靶。
Abstract:
A method for producing a spongy mass of compacted collagen particles having a large surface area to volume ratio and suitable for use in filtering materials such as tobacco smoke. To form the spongy mass, finely granulated collagen particles are mixed with snow, frozen carbon dioxide or similar material, and the mixture chopped and mixed at temperatures below the freezing point to cause entwining of the distal fibers and impart binding. The mixture is then compacted and forced through a forming tube having a gradually decreasing diameter and porous walls through which the supporting snow or carbon dioxide matrix is removed. A compacted tube or rod of collagen sponge suitable for filtering cigarette or tobacco smoke merges from the forming tube and can be cut or otherwise treated as desired.
Abstract:
Systems and methods for producing aerogel materials are generally described. In certain cases, the methods do not require supercritical drying as part of the manufacturing process. In some cases, certain combinations of materials, solvents, and/or processing steps may be synergistically employed so as to enable manufacture of large (e.g., meter-scale), substantially crack free, and/or mechanically strong aerogel materials.
Abstract:
The present disclosure provides composites comprising an open cell foam and a small pore area material, methods for their preparation, articles of manufacture comprising them and methods for preparing the same.
Abstract:
La presente invención describe un procedimiento para la obtención de un scaffold que consiste en una matriz porosa de PCL y un recubrimiento de hidroxiapatita que comprende: (i) preparar una disolución homogénea de PCL en una mezcla de dos disolventes, un disolvente de PCL, y un no-solvente de PCL, (ii) rellenar un molde con dicha disolución homogénea; (iii) enfriar la disolución homogénea hasta una temperatura inferior a la temperatura a la que se produce la separación de dos fases liquidas; (iv) tratamiento isotérmico; (v) solidificar ambas fases disminuyendo la temperatura; (vi) extraer el disolvente de PCL y el no-solvente de PCL, con un tercer disolvente; y (vii) deposición de HAp biomimética. El soporte es útil en aplicaciones de ingeniería tisular.
Abstract:
Aerogel compositions, methods for preparing the aerogel compositions, articles of manufacture that include or are made from the aerogel compositions are described and uses thereof. The aerogels include a branched polyimide matrix with little to no crosslinked polymers.
Abstract:
A process for crosslinking a poly(alkylene carbonate) (PAC) in the presence of a metal ion, said process comprising: a) adding a crosslinking agent to said poly(alkylene carbonate) and b) crosslinking the resulting product of step a); so as to form a crosslinked PAC in which the crosslinks formed involve the complexation of the metal ion to said PAC and said crosslinking agent.
Abstract:
Film, fibre, foam and adhesive materials are produced from soluble S-sulfonated keratins. Once formed, the films, fibres, foams or adhesives are treated to modify the properties of the materials, in particular to improve the wet strength of the materials. Treatments used include removal of the S-sulfonate group by treatment with a reducing agent, treatment with an acid or treatment with a common protein crosslinking agent or treatment with a reduced form of keratin or keratin protein. The films are made by solvent casting a solution of S-sulfonated keratin proteins, the foam made by freeze-drying a solution of S-sulfonated keratin proteins and the fibres made by extruding a solution of a S-sulfonated keratin protein.