Abstract:
A braided hose reinforcement includes left and right turning strips. Each of the strips includes a number of elongated metal elements embedded in a matrix of a polymer material.
Abstract:
An elastomer rope is disclosed which is useful among other things for clamping goods to the platform of a load carrying vehicle and for mooring boats, floating landing stages, buoys, navigation marks and the like. A mooring device is also shown for anchoring floating landing stages, buoys, navigation marks and the like. The elastomer rope has the property of becoming progressively ever stiffer at increasing elongation and consists of a core of an elastomeric material, a reinforcement wound helically about the core and consisting of a material considerably less elongatable than the elastomeric material of the core, and an outer covering layer of elastomeric material. The progressivity is attained in that the reinforcement is helically wound about the core at a reinforcement angle of 50.degree.-65.degree. between the longitudinal axis of the core and the reinforcement projected at right angles thereto. The mooring device has a floating body connected to a bottom fastening with the aid of an elastic element which is under tensile prestress. The floating body is rigidly connected to a rigid tubular arm which extends downwards from the floating body. The elastic element extends from below into the tubular arm and is fixed to the upper end thereof. The elastic element is such as to become progressively ever more rigid at increasing elongation and consists of an elastomer rope of the above design.
Abstract:
A cable comprises at least one layer of strands (10) with each strand covered with an individual sheath (20) of rubber or plastics material. The sheaths are so shaped (16, 17, 18) that the sheaths of adjacent strands interlock. This provides a layer in which the strands have a generally fixed spatial relationship both to each other and within the cable. This reduces inter-strand forces, so increasing cable life, and also provides a dimensionally stable cable.
Abstract:
Une installation de fabrication d'un assemblage (A) d'éléments filaires (14) enroulés ensemble en hélice comprend : - des moyens de retordage (16) d'au moins des premier et deuxième éléments filaires (14) agencés de façon à retordre les premier et deuxième éléments filaires (14) séparément l'un de l'autre, - des moyens de préformation (18) en hélice d'au moins les premier et deuxième éléments filaires retordus (14) agencés en aval des moyens de retordage et de façon à préformer les premier et deuxième éléments filaires retordus (14) séparément l'un de l'autre, - des moyens d'assemblage (20) d'au moins les premier et deuxième éléments filaires (14) retordus et préformés agencés en aval des moyens de préformation et de façon à former l'assemblage (A) d'éléments filaires (14).
Abstract:
In the method according to the invention in the manufacture of an elevator the following procedures are performed, -a movable supporting platform (4) and an elevator car (2), and possibly a counterweight (CW), are installed in the elevator hoistway (1), -the rope installation is performed, in which the elevator is reeved to comprise construction-time hoisting roping (3,3'), and the hoisting roping (3,3') is arranged to support the elevator car (2) resting on the supporting platform (4) supported in its position above the elevator car (2), -the elevator car (2) is taken into use to serve passengers and/or to transport goods, -the elevator car (2) is removed from the aforementioned use, - the service range of the elevator car is changed to reach higher up in the elevator hoistway (1) by lifting the supporting platform higher up in the elevator hoistway with hoisting means (22,30), -the elevator car (2) is taken back into the aforementioned use. In the aforementioned rope installation the elevator is reeved to comprise construction-time hoisting roping (3,3')/ which comprises one or more ropes, the longitudinal power transmission capacity of which is based at least essentially on non-metallic fibers in the longitudinal direction of the rope. In the method guide rails (G) to be fixed with guide rail brackets (b) can additionally be installed by the aid of installation means (8,9). The invention also relates to an elevator arrangement, with which the aforementioned method can be performed.
Abstract:
Elevator, which comprises at least an elevator car (C) and means for moving the elevator car, preferably along guide rails (G), and an overspeed governor arrangement, which comprises an overspeed governor rope (R,R',R''), which moves according to the movement of the elevator car, and which overspeed governor rope (R,R',R'') is connected to a brake arrangement that is in connection with the elevator car (C) such that with the overspeed governor rope (R,R',R'') force can be transmitted to the brake arrangement for shifting the brake (SG) comprised in the brake arrangement into a braking position. The rope comprises a power transmission part (2) or a plurality of power transmission parts (2), for transmitting force in the longitudinal direction of the rope, which power transmission part (2) is essentially fully of non-metallic material.
Abstract:
One aspect of this invention concerns a multi-strand steel wire rope (28, 32, 36, 46, 50) comprising multiple strands (3, 10, 38) laid up helically on a core (30, 34, ), characterised in that at least some of the strands are deep strands (10, 38), i.e. strands with a heightwidth ratio greater than unity. Another aspect of the invention concerns the deep strand (10, 38) itself.