Abstract:
The present invention discloses a method for treating sludge of the sewage treatment plants by using circulating fluidized bed boiler combustion. The method includes the following steps: (1) Preparing step of sludge coal mixture by adding fine coal and dispersant into sludge from the sewage treatment plants, then stirring and adding stabilizing agent; (2) clean burning step of the sludge coal mixture by feeding the prepared sludge coal mixture into the circulating fluidized bed boiler for clean burning, wherein a furnace of the circulating fluidized bed boiler contains fluidized media of quartz sand and limestone. The preparation of the sludge coal mixture also includes the steps: firstly, waste water is adsorbed and filtered by fine coal and CaO to form the resulted coal sludge into which others fine coal is added, thus the sludge coal mixture is prepared.
Abstract:
The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NOx emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NOx. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.
Abstract:
In an improved system for recovering heat from a combustion gas produced by burning wastes, the combustion gas or combustible gas produced by partial burning of the wastes subjected to dust filtration in a temperature range of 450-650null C. at a filtration velocity of 1-5 cm/sec under a pressure of from null5 kPa (gage) to 5 MPa before heat recovery is effected. The dust filtration is preferably performed using a filter medium which may or may not support a denitration catalyst. Heat recovery is preferably effected using a steam superheater. The dust-free gas may partly or wholly be reburnt with or without an auxiliary fuel to a sufficiently high temperature to permit heat recovery. The combustion furnace may be a gasifying furnace which, in turn, may be combined with a melting furnace. If desired, the reburning to a higher temperature may be performed under pressure and the obtained hot combustion gas is supplied to a gas turbine to generate electricity, followed by introduction of the exhaust gas from the gas turbine into a steam superheater for further heat recovery. The system can raise the temperature of superheated steam to a sufficient level to enhance the efficiency of power generation without possibility of corrosion of heat transfer pipes by the combustion gas or combustible gas.
Abstract:
The system for producing combustion ash of cellulose-containing wastes, provided with a kneading device 3 for kneading cellulose-containing wastes with a prescribed amount of liquid fuel oil, a molding device 5 for molding said kneaded mixture, and a combustion furnace 7 for burning said moldings, is characterized in that the humidity conditioning furnace 6 for adjusting the water content of said moldings is arranged between said molding device and said combustion furnace. Since the water content of said moldings is adjusted by the humidity conditioning furnace at the time of burning said moldings, the organic substances (cellulose or the like) are burned almost perfectly. Consequently, the present invention has the advantage of being able to produce combustion ash of good quality without generating such combustion residue as graphite and black smoke.
Abstract:
In an improved system for recovering heat from a combustion gas produced by burning wastes, the combustion gas or combustible gas produced by partial burning of the wastes subjected to dust filtration in a temperature range of 450-650° C. at a filtration velocity of 1-5 cm/sec under a pressure of from −5 kPa (gage) to 5 MPa before heat recovery is effected. The dust filtration is preferably performed using a filter medium which may or may not support a denitration catalyst. Heat recovery is preferably effected using a steam superheater. The dust-free gas may partly or wholly be reburnt with or without an auxiliary fuel to a sufficiently high temperature to permit heat recovery. The combustion furnace may be a gasifying furnace which, in turn, may be combined with a melting furnace. If desired, the reburning to a higher temperature may be performed under pressure and the obtained hot combustion gas is supplied to a gas turbine to generate electricity, followed by introduction of the exhaust gas from the gas turbine into a steam superheater for further heat recovery. The system can raise the temperature of superheated steam to a sufficient level to enhance the efficiency of power generation without possibility of corrosion of heat transfer pipes by the combustion gas or combustible gas.
Abstract:
A system for producing a suitable fuel from waste material including a dispersion tank in which is located a rotary dispersion and agitation system comprising external vanes, rotary and stationary plates having opposing faces fitted with intermeshing shear blocks, forming an attrition zone therebetween for grinding and dispersing solids in a liquid blend stock. A method is provided for varying the displacement between the shear blocks to control the fineness of the grinding of the waste material. A method is provided for discharging metal from the dispersion tank and a pump is provided for circulating liquid from the dispersion tank to an accumulation tank and for recirculating the liquid from the accumulation tank to the dispersion tank. Feeding systems are provided for delivering solid waste material to the dispersion tank and include systems for grinding drums containing waste material, expressing waste material from the drums and auguring waste material from the drums. The present invention also provide a method of processing waste material and a blend stock which provides a suitable fuel and includes the steps of grinding the waste material in a tank containing the blend stock with the grinding being in at least part provided by the coaction between a rotating impeller and a stationary plate so that the degree to which the waste material is ground is controlled by controlling the spacing between the plate and the impeller.
Abstract:
An ecologically clean process is described for the disposal of partially dewatered waste water sludges in combination with hazardous or noxious chemical wastes, with or without added high calorific waste from other sources which comprises, dewatering the sludge to a solids content of at least about 25% by weight, blending the dewatered sludge with any desired amount of added hazardous chemical waste up to 25% by weight or more, and with 0% up to about 35% by weight of a combustible waste from any other source having a calorific content of at least about 5000 BTU/lb. to obtain a mixture which is at least almost autogeneously combustible and then incinerating said mixture at a temperature of at least about 1400.degree. F for sufficient time to substantially completely combust the mixture to substantially odor-free off gases, said incineration being preferably conducted entirely autogeneously or with a minimal amount of auxiliary fossil fuel.
Abstract:
In a method of processing fuel shale to produce energy and cement clinker at the same time, oil shale and/or coal shale are disintegrated, homogenized and activated in a pin beater mill or vibrating mill. The effect of the treatment is monitored by X-ray microanalysis and the treatment is automatically controlled. The admixtures required for the production of a cement having the desired quality are added simultaneously at controlled rates. The thus treated material is then burnt in a boiler plant, preferably at combustion temperatures up to 1400.degree.C and with simultaneous sintering, whereby ash and/or slag is formed which contains at least 60% cement clinker. Said cement clinker is separated from the residual ash and slag and in an impact-type mill is disintegrated in such a manner that each clinker particle is subjected to 3-8 impacts within a time of preferably less than 0.01 second by beating elements which are moved at a velocity of at least 15 meters per second, preferably at a velocity between 50 meters and 250 meters per second.
Abstract:
Fuel mixed in water is combusted in a reactor having an internal operating pressure and temperature greater than 3200 psi and greater than 374° C., where the combustion of the fuel is exothermic. Air and fuel are pressurized for introduction into the reactor to a pressure greater than the internal operating pressure using energy generated from the combustion of the fuel, and the pressurized air and the pressurized fuel are injected into the reactor. Pressurized water from the reactor is injected into a drive water column that is partially filled with water to increase a pressure of the drive water column, and water at a temperature less than 100° C. is injected into the reactor to replace water from the reactor that is injected into the drive water column. Pressurized water from the drive water column is used to drive a hydroelectric drive system to produce electrical power.
Abstract:
A method for the treatment of waste by plasma treating the waste to destroy the hazardous organic components and to yield a slag and an off-gas by plasma treating the waste in the presence of added oxygen gas in a transferred-arc plasma treatment unit, followed by directing off-gas from the plasma treatment unit to a thermal oxidizer combustion chamber.