Abstract:
본 발명은 수신된 광의 스펙트럼 성분들을 검출하기 위한 스펙트럼 검출 디바이스(100)에 관한 것이고, 상기 스펙트럼 검출 디바이스(100)는 상기 수신된 광을 필터링하고 미리 결정된 파장 범위 내의 파장을 갖는 광을 출력하도록 구성되는 필터링 구조(110); 및 상기 필터링 구조(110)에 의해 출력된 상기 광(102)을 검출하도록 구성되는 광 센서(120)를 포함하고, 상기 필터링 구조(110)는 시간에 따른 상기 미리 결정된 파장 범위의 변화를 허용하도록 가변적이다. 이 배열에 의해 낮은 비용으로 제공될 수 있는 콤팩트한 스펙트럼 검출 디바이스가 가능하다.
Abstract:
레드, 그린 및 블루 라이트 소스의 프라이머리 컬러 색도 좌표를 식별하기 위한 시스템 및 방법은 라이트 소스에 의해 생성되는 결합된 라이트를 수신하는 3 자극 필터를 포함한다. 라이트 소스는 바람직하게는 레드, 그린 및 블루 발광 다이오드의 그룹이다. 프로세서는 각 레드, 그린 및 블루 LED에 대해 원하는 인텐시티 값을 설정하는 복수의 테스트 제어 신호를 생성하기 위하여 배치된다. 이러한 테스트 제어 신호에 기초하여, 시스템은 이러한 레드, 그린 및 블루 LED에 의해 생성되는 결합된 라이트에 대응하는 색도 좌표의 세 가지 세트를 측정하기 위하여 배치된다. 그 후에, 프로세서는 결합된 라이트의 측정된 좌표 및 LED의 인텐시티 값 및 결합된 라이트의 인텐시티 값에 기초하여, LED의 컬러 색도 좌표를 계산한다. 본 발명의 일 실시예에 따른 이러한 캘리브레이션은 행렬식을 풂으로써 달성된다. 개개의 라이트 소스의 컬러 좌표가 유니크하게 계산되자마자, 시스템은 결합된 라이트에 원하는 컬러 색도 좌표를 제공하기 위해 필요한 각 라이트 소스에 대한 라이트의 인텐시티 값을 측정한다. 이러한 인텐시티 값은 LED가 그 특성을 배치마다 또는 시간에 걸쳐 변화하는 원하는 결합된 라이트를 유지하기 위한 피드백 제어 회로에 사용될 수 있다.
Abstract:
A spectrometer includes an illuminating section; a receiving section configured to detect radiation reflected from an object including an optically inhomogeneous scattering medium; a hardware section configured to obtain a solution of an inverse problem to reconstruct an absorption spectrum of the optically inhomogeneous scattering medium, wherein the illuminating section includes at least one light-emitting diode source, a radiation spectral curve of which is divided, by at least two spectral filters having different spectral transmission curves, into at least two spectral regions, to form an equivalent radiation spectrum from at least two spectral sources, and wherein the hardware section applies the solution of the inverse problem based on information about a spectral content of the radiation of the illuminating section, a signal obtained in a form of a response from the optically inhomogeneous scattering medium, and a spectral sensitivity curve of the receiving section.
Abstract:
An optical computing device including a detector having a non-planar semiconductor structure is provided. The detector may include one or more structures having structure characteristics that may be optimized to respond to and weight predetermined wavelengths of light radiated from a sample that are related to characteristics of the sample. The detector may include an array of the one or more structures, wherein each of the structure units may be individually addressable to program or tune the detector to respond to and weight a spectra of light and generate an output signal based on the weighted spectra of light that is proportional to the characteristics of the sample.
Abstract:
The invention generally relates to methods for analyzing a heterogeneous sample. In certain aspects, the invention provides methods that involve illuminating a heterogeneous sample including a target analyte with polychromatic light, receiving luminous data of the heterogeneous sample and the target analyte is received to a detector without splitting the polychromatic light into individual wavelengths and generating spectral data therefrom. The analysis can be conducted without reacting the target analyte with chemical reagents.
Abstract:
An infrared-sensor filter member includes an optical filter disposed in an opening portion of a second member and a first member. The infrared-sensor filter member includes a recess portion formed from a light-incident surface of the optical filter and the first member. At least a part of a bottom surface of the recess portion is formed by the light-incident surface and side walls of the recess portion, which are formed by the first member.
Abstract:
A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.
Abstract:
An infrared-sensor filter member includes an optical filter disposed in an opening portion of a second member and a first member. The infrared-sensor filter member includes a recess portion formed from a light-incident surface of the optical filter and the first member. At least a part of a bottom surface of the recess portion is formed by the light-incident surface and side walls of the recess portion, which are formed by the first member.