Abstract:
The invention relates to a device for detecting thermal radiation, comprising at least one membrane on which at least one thermal detector element for converting the thermal radiation to an electrical signal is arranged, and at least one circuit carrier for carrying the membrane and for carrying at least one readout circuit for reading out the electrical signal, the detector element and the readout circuit being electrically interconnected through the membrane through an electrical via. The invention also relates to a method for producing said device by way of the following process steps: a) providing the membrane having the detector element and at least one electrical via and providing the circuit carrier, and b) uniting the membrane and the circuit carrier in such a manner that the detector element and the readout circuit are electrically interconnected through the membrane through an electrical via. The production is preferably carried out on the wafer level: Functionalized silicon substrates are stacked, firmly interconnected and then subdivided. The detector elements are preferably pyroelectric detector elements. The device according to the invention is used in motion detectors, presence detectors and thermal imaging cameras.
Abstract:
A bolometer type ultra-sensitive silicon sensor including a detector stage (14), an intermediate stage (16), and a heat bath stage (17). The detector stage, the intermediate stage and a portion of the heat bath stage are generally co-planar and are interconnected by I-beam bridges so as to permit mutually co-planar rotation. Mechanical and electrical coupling is improved between a micro-antenna and the detector stage by a two stage transformer assembly (L1-L2, L5-L6) coupled between the micro-antenna and a detector element of the detector stage.
Abstract:
A thermal infrared detector comprising a dielectric pellicle (5) suspended over a cavity in a substrate (6), the pellicle supporting a detector element (1) comprising a heat sensitive semiconductor layer (3) between a pair of thin film metallic contacts (2, 4), these being deposited on the pellicle, the cavity being formed by etching and removal of the substrate material through holes or slots (8) in the surface of the substrate.
Abstract:
Le détecteur thermique à infra-rouge décrit comprend une pellicule diélectrique (5) qui est maintenue au-dessus d'une cavité ménagée dans un susbtrat (6) et qui soutient un élément détecteur (1) comportant une couche semiconductrice thermosensible (3) entre une paire de contacts métalliques en forme de minces films (2, 4), déposés sur la pellicule. On forme la cavité en procédant par attaque et en évacuant le matériau du substrat par des trous ou des fentes (8) ménagés dans la surface du substrat.
Abstract:
A microbolometer pixel unit for detection of terahertz radiation includes a substrate, a thermistor structure, and an optical absorber structure. The thermistor structure includes a plurality of microbolometer pixels disposed on the substrate. Each pixel includes a thermistor platform suspended above the substrate, a thermistor support member holding the thermistor platform, and a thermistor disposed on the thermistor platform and having an electrical resistance that varies in accordance with a temperature of the thermistor. The optical absorber structure includes an absorber platform suspended above the thermistor structure, an absorber support member holding the absorber platform and including a plurality of support elements, each support element providing a thermal conduction path from the absorber platform to the thermistor platform of a respective one of the microbolometer pixels, and an optical absorber disposed on the absorber platform to absorb incoming terahertz radiation to generate heat to change the temperature of the thermistors.
Abstract:
An infrared imaging micro-bolometer integrates a membrane assembled in suspension on a substrate by support arms. The membrane includes an absorbing material configured to capture infrared radiations and a thermometric material connected to the absorbing material configured to perform a transduction of the infrared radiations captured by the absorbing material The thermometric material is arranged on a surface area smaller than 0.4 times a surface area of the membrane. The membrane also includes at least one central dielectric layer arranged between the absorbing material and the thermometric material. Recesses are formed in the absorbing material and in the at least one dielectric layer in portions of the membrane devoid of the thermometric material.
Abstract:
A thermal sensor, a thermal sensor array, an electronic apparatus including the thermal sensor, and an operating method of the thermal sensor are provided. The thermal sensor includes a first region onto which first infrared light is incident, a visible light radiation region configured to radiate visible light generated by incidence of the first infrared light on the first region, a second region onto which second infrared light is incident, and an image sensor configured to receive the visible light radiated from the visible light radiation region. The first region, the second region, and the visible light radiation region each include a nonlinear optical material.
Abstract:
A method of preparation of focal plane arrays of infrared bolometers includes processing carbon nanotubes to increase a temperature coefficient of resistance (TCR), followed by patterning to form focal plane arrays for infrared imaging.
Abstract:
A method of manufacturing a detector capable of detecting a wavelength range [λ8; λ14] centered on a wavelength λ10, including: forming said device on a substrate by depositing a sacrificial layer totally embedding said device; forming, on the sacrificial layer, a cap including first, second, and third optical structures transparent in said range [Δ8; λ14], the second and third optical structures having equivalent refraction indexes at wavelength λ10 respectively greater than or equal to 3.4 and smaller than or equal to 2.3; forming a vent of access to the sacrificial layer through a portion of the cap, and then applying, through the vent, an etching to totally remove the sacrificial layer.