Abstract:
Die Erfindung betrifft ein Verfahren zum Herstellen eines Mikrosystems, mit den Schritten: Bereitstellen eines Substrats (2) aus Aluminiumoxid; Herstellen einer Dünnschicht (6) auf dem Substrat (2) durch Abscheiden von Bleizirkonattitanat auf das Substrat (2) mit einem thermischen Abscheideverfahren derart, dass das Bleizirkonattitanat in der Dünnschicht (6) selbstpolarisiert ist und vorwiegend in der rhomboedrischen Phase vorliegt; Abkühlen des Substrats (2) mit der Dünnschicht (6).
Abstract:
Die Erfindung betrifft eine Vorrichtung (1) zur Detektion von Wärmestrahlung, mit einer Membran (101) und mindestens zwei Detektorelementen (11), die jeweils zum Umwandeln von Wärmestrahlung in ein elektrisches Signal eingerichtet und auf der Membran nebeneinander liegend angebracht sind, wobei auf der den Detektorelementen zugewandten Seite der Membran und/oder auf der den Detektorelementen abgewandten Seite der Membran mindestens eine Wärmeableitbahn (104) vorgesehen ist, die eine höhere Wärmeleitfähigkeit als die Membran hat und mit den Detektorelementen via die Membran wärmeleitend verbunden ist, so dass Wärme von den Detektorelementen mit der Wärmeableitbahn abführbar ist, wodurch die Ansprechzeit der Detektorelemente hoch ist, und wobei in der Membran integriert mindestens eine Wärmebarriere (105) vorgesehen ist, die eine niedrigere Wärmeleitfähigkeit als die Membran hat und zwischen den Detektorelementen sich erstreckt, so dass von der Wärmebarriere eine Wärmeleitung in der Membran von dem einen Detektorelement zu dem anderen Detektorelement behindert ist, wodurch das Übersprechen der Detektorelemente gering ist.
Abstract:
Die Erfindung betrifft eine Vorrichtung (1) zur Detektion von Wärmestrahlung, aufweisend einen Stapel (10) mit mindestens einem Detektorträger (11) mit mindestens einem thermischen Detektorelement (111) zur Umwandlung der Wärmestrahlung in ein elektrisches Signal, mindestens einem Schaltungsträger (12) mit mindestens einer Ausleseschaltung (121, 122) zum Auslesen des elektrischen Signals, und mindestens einer Abdeckung (13) zum Abdecken des Detektorelements, wobei der Detektorträger und die Abdeckung derart aneinander angeordnet sind, dass zwischen dem Detektorelement des Detektorträgers und der Abdeckung mindestens ein, vom Detektorträger und von der Abdeckung begrenzter, erster Stapelhohlraum (14) des Stapels vorhanden ist, der Schaltungsträger und der Detektorträger derart aneinander angeordnet sind, dass zwischen dem Detektorträger und dem Schaltungsträger mindestens ein, vom Schaltungsträger und vom Detektorträger begrenzter, zweiter Stapelhohlraum (15) des Stapels vorhanden ist und der erste Stapelhohlraum und/oder der zweite Stapelhohlraum evakuiert oder evakuierbar sind. Daneben wird ein Verfahren zum Herstellen der Vorrichtung angegeben. Detektorträger, Schaltungsträger und Abdeckung sind vorzugsweise aus Silizium. Das Herstellen erfolgt auf Wafer-Ebene: Es werden funktionalisierte Silizium-Substrate übereinander gestapelt, fest miteinander verbunden und anschließend vereinzelt. Vorzugsweise sind die Detektorelemente pyroelektrische Detektorelemente. Verwendung findet die Vorrichtung in Bewegungsmeldern, Präsenzmeldern und Wärmebildkameras.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Detektion von Wärmestrahlung mit einem Substrat mit einer Substratoberfläche, einem auf der Substratoberfläche angeordneten pyroelektrischen Detektorelement in Dünnschichtbauweise mit einer der Substratoberfläche zugewandten unteren Elektrodenschicht, einer der Substratoberfläche abgewandten oberen Elektrodenschicht und einer zwischen den Elektrodenschichten angeordneten pyroelektrisch aktiven Schicht, mindestens einem auf der Substratoberfläche neben dem pyroelektrischem Detektorelement angeordneten weiteren pyroelektrischem Detektorelement in Dünnschichtbauweise mit einer der Substratoberfläche zugewandten weiteren unteren Elektrodenschicht, einer der Substratoberfläche abgewandten weiteren oberen Elektrodenschicht und einer zwischen den weiteren Elektrodenschichten angeordneten weiteren pyroelektrisch aktiven Schicht, wobei die unteren Elektrodenschichten der Detektorelemente elektrisch von einander isoliert sind und die pyroelektrisch aktiven Schichten der Detektorelemente von einer zusammenhängenden Keramikschicht gebildet sind. Daneben wird ein Verfahren zum Herstellen der Vorrichtung zur Detektion von Wärmestrahlung mit folgenden Verfahrensschritten angegeben: a) Bereitstellen eines Substrats mit einer Substratoberfläche, b) Anordnen der unteren Elektrodenschicht und Anordnen der weiteren unteren Elektrodenschicht auf der Substratoberfläche, so dass die unteren Elektrodenschichten elektrisch voneinander isoliert sind, c) Anordnen der zusammenhängenden Keramikschicht auf den unteren Elektrodenschichten und d) Anordnen der oberen Elektrodenschichten auf der Keramikschicht. Verwendung findet die Vorrichtung in Bewegungsmeldern, Präsenzmeldern und Wärmebildkameras.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Detektion von Wärmestrahlung, aufweisend mindestens eine Membran, auf der mindestens ein thermisches Detektorelement zur Umwandlung der Wärmestrahlung in ein elektrisches Signal angeordnet ist, und mindestens einen Schaltungsträger zum Tragen der Membran und zum Tragen mindestens einer Ausleseschaltung zum Auslesen des elektrischen Signals, wobei das Detektorelement und die Ausleseschaltung über eine elektrische Durchkontaktierung durch die Membran hindurch elektrisch miteinander verbunden sind. Daneben wird ein Verfahren zum Herstellen der Vorrichtung mit folgenden Verfahrensschritten angegeben: a) Bereitstellen der Membran mit dem Detektorelement und mindestens einer elektrischen Durchkontaktierung und Bereitstellen des Schaltungsträgers und b) Zusammenbringen der Membran und des Schaltungsträgers derart, dass das Detektorelement und die Ausleseschaltung über eine elektrische Durchkontaktierung durch die Membran hindurch elektrisch miteinander verbunden sind. Das Herstellen erfolgt vorzugsweise auf Wafer-Ebene: Es werden funktionalisierte Silizium-Substrate übereinander gestapelt, fest miteinander verbunden und anschließend vereinzelt. Vorzugsweise sind die Detektorelemente pyroelektrische Detektorelemente. Verwendung findet die Vorrichtung in Bewegungsmeldern, Präsenzmeldern und Wärmebildkameras.
Abstract:
The invention relates to a device (1) for detecting thermal radiation, comprising at least one stack (10) having at least one detector carrier (11) with at least one thermal detector element (111) for converting the thermal radiation to an electrical signal, at least one circuit carrier (12) having at least one readout circuit (121, 122) for reading out the electrical signal, and at least one cover (13) for covering the detector element. The detector carrier and the cover are arranged on each other in such a manner that at least one first stack cavity (14) of the stack is produced between the detector element of the detector carrier and the cover, said cavity being delimited by the detector carrier and the cover. The circuit carrier and the detector carrier are arranged on each other in such a manner that at least one second stack cavity (15) of the stack is produced between the detector carrier and the circuit carrier, said cavity being delimited by the circuit carrier and the detector carrier. The first stack cavity and/or the second stack cavity are or can be evacuated. The invention also relates to a method for producing said device. The detector carrier, circuit carrier and the cover are preferably produced from silicon. The production is preferably carried out on the wafer level: Functionalized silicon substrates are stacked, firmly interconnected and then subdivided. The detector elements are preferably pyroelectric detector elements. The device according to the invention is used in motion detectors, presence detectors and thermal imaging cameras.
Abstract:
The invention relates to a device for detecting thermal radiation, comprising at least one membrane on which at least one thermal detector element for converting the thermal radiation to an electrical signal is arranged, and at least one circuit carrier for carrying the membrane and for carrying at least one readout circuit for reading out the electrical signal, the detector element and the readout circuit being electrically interconnected through the membrane through an electrical via. The invention also relates to a method for producing said device by way of the following process steps: a) providing the membrane having the detector element and at least one electrical via and providing the circuit carrier, and b) uniting the membrane and the circuit carrier in such a manner that the detector element and the readout circuit are electrically interconnected through the membrane through an electrical via. The production is preferably carried out on the wafer level: Functionalized silicon substrates are stacked, firmly interconnected and then subdivided. The detector elements are preferably pyroelectric detector elements. The device according to the invention is used in motion detectors, presence detectors and thermal imaging cameras.
Abstract:
Die Erfindung betrifft ein Verfahren zum Herstellen eines Mikrosystems, mit den Schritten: Bereitstellen eines Substrats (2) aus Aluminiumoxid; Herstellen einer Dünnschicht (6)auf dem Substrat (2)durch Abscheiden von Bleizirkonattitanat auf das Substrat (2) mit einem thermischen Abscheideverfahren derart, dass das Bleizirkonattitanat in der Dünnschicht (6) selbstpolarisiert ist und vorwiegend in der rhomboedrischen Phase vorliegt; Abkühlen des Substrats (2)mit der Dünnschicht (6).
Abstract:
The invention relates to a device (1) for detecting heat radiation, comprising a membrane (101) and at least two detector elements (11), both of which are configured to convert heat radiation to an electrical signal, said detector elements being attached to the membrane and located adjacent to one another, wherein at least one heat dissipation path (104) is provided on the side of the membrane facing the detector elements or the side of the membrane facing away from the detector elements, said heat dissipation path having a greater heat conducting capacity than the membrane and being connected to the detector elements in a heat-conductive manner via the membrane, such that heat from the detector elements may be dissipated by the heat dissipation path, whereby the response time of the detector elements is high, and wherein at least one heat barrier (105) is provided that is integrated into the membrane, said heat barrier having a lower level of heat conductivity than the membrane and extending between the detector elements, preventing the conduction of heat in the membrane from one detector element to the other detector element, whereby the crosstalk between the detector elements is low.