Abstract:
A spectroscopic system for the analysis of small and very small quantities of substances makes use for the purposes of energy transfer of cone-shaped aperture changers (14, 15) which are arranged in the object zone (8) between the light source (L) and the sample (9) and, during absorption measurements, also between the sample (9) and the inlet slot (3) of a spectrometer (1). If the form used is a double cone, the aperture changers (14, 15) facilitate an oblique coupling in a capillary tube accepting the sample (9) which acts as a step-waveguide for the coupled radiation.
Abstract:
Aspects of the present disclosure are directed to a method and a device for carrying out chemical, biochemical and/or immunochemical analyses of liquid samples, which are present in a sample store of an automatic analyzer, with the aid of liquid reagents, which are present in at least one reagent store of the analyzer. In one embodiment, a analyzer is disclosed including cuvettes for holding the liquid samples and reagents, the cuvettes are arranged in at least one stationary, linear cuvette array. The analyzer further has an optical measurement unit with a stationary light-supplying unit which has at least one light distributor device that feeds the light from a plurality of LED light sources emitting in a spectrally different manner in the UV/VIS/NIR wavelength range into the inlet windows of the individual cuvettes of the cuvette array. The optical measurement unit further includes a stationary detection unit assigned to outlet windows of the cuvettes and further includes a plurality of photodiodes.
Abstract:
A system, method and apparatus for taking a Raman spectrum of a sample is disclosed. In one embodiment, for example, an integrated Raman spectrometer is provided. In another embodiment, a portable Raman spectrometer is provided. In another embodiment, a Raman spectrometer is provided comprising a collimated beam tube for transmitting excitation radiation to an external optical system, such as a microscope, a telescope or a camera lens. In another embodiment, a method for correcting a Raman spectrum for background interference is provided. In yet another embodiment, a method for rejecting fluorescence in a Raman spectrometer is provided. A chemical reactor comprising a built-in Raman detector for monitoring a chemical reaction in a reaction chamber of the reactor is also provided.
Abstract:
An apparatus and method for correction of relative object-detector motion between successive views during optical tomographic imaging in three dimensions. An object of interest is illuminated to produce an image. A lateral offset correction value is determined for the image. An axial offset correction value is determined for the image. The lateral offset correction value and the axial offset correction value are applied to the image to produce a corrected file image.
Abstract:
A system, method and apparatus for taking a Raman spectrum of a sample is disclosed. In one embodiment, for example, an integrated Raman spectrometer is provided. In another embodiment, a portable Raman spectrometer is provided. In another embodiment, a Raman spectrometer is provided comprising a collimated beam tube for transmitting excitation radiation to an external optical system, such as a microscope, a telescope or a camera lens. In another embodiment, a method for correcting a Raman spectrum for background interference is provided. In yet another embodiment, a method for rejecting fluorescence in a Raman spectrometer is provided. A chemical reactor comprising a built-in Raman detector for monitoring a chemical reaction in a reaction chamber of the reactor is also provided.
Abstract:
A method and apparatus for characterizing and screening an array of material samples is disclosed. The apparatus includes a sample block having a plurality of regions for containing the material samples, a polarized light source to illuminate the materials, an analyzer having a polarization direction different than the polarization direction of the polarized light source, and a detector for analyzing changes in the intensity of the light beams. The light source, together with a polarizer, may include a plurality of light beams to simultaneously illuminate the entire array of materials with linearly polarized light so that characterization and screening can be performed in parallel. In addition, the materials in the sample block maybe subjected to different environmental conditions or mechanical stresses, and the detector analyzes the array as a function of the different environmental conditions or mechanical stresses.
Abstract:
A spectroscopic system for the analysis of small quantities of substances makes use for the purposes of energy transfer of cone-shaped aperture changers which are arranged in the object zone between the light source and the sample and, during absorption measurements, also between the sample and the inlet slot of a spectrometer. A microcell system is provided in the object space. The microcell system comprises a cylindrical cell tube with a hollow core for receiving a sample liquid. The cell tube and the sample liquid being adjustable with respect to the refractive index such that they act as a step waveguide for radiation, the sample liquid forming the core and the wall of the cell tube forming the sheath of the step waveguide.
Abstract:
A spectroscopic system for the analysis of small and very small quantities of substances makes use for the purposes of energy transfer of cone-shaped aperture changers (14, 15) which are arranged in the object zone (8) between the light source (L) and the sample (9) and, during absorption measurements, also between the sample (9) and the inlet slot (3) of a spectrometer (1). If the form used is a double cone, the aperture changers (14, 15) facilitate an oblique coupling in a capillary tube accepting the sample (9) which acts as a step-waveguide for the coupled radiation.
Abstract:
An optical transmission spectrometer for transmission measurements of absorbing and scattering samples includes light sources mounted parallel to each other in a holder. The beams of light emanating from the light sources are directed through a beam-combiner. The beam-combiner includes a first refractive surface at an angle of incidence of 45.degree.. The first refractive surface refracts light toward a common axis. The beam-combiner includes a second refractive surface parallel to the first refractive surface for refracting the beam of light along a common axis parallel to the original direction of the beam of light. The beam-combiner can include additional refractive surfaces for other beams of light to combine the beams of light into a primary beam. The spectrometer includes a collimating tube extending along the common axis for baffling stray light and directing the primary beam through a sample. A second collimating tube is provided on the side of the sample opposite the first collimating tube for baffling stray light passing through the sample. The second collimating tube directs the primary beam to a detector package mounted in a holder, where the detector viewing area of the sample is limited to that of the primary beam. As an alternative, an optic which is capable of directing multiple light beams onto a common intersection point may be used in place of the previously mentioned beam-combiner. Unlike the beam-combiner which closely aligns multiple parallel light beams and transmits them as substantially a single beam along the common axis, the alternate optical directs multiple light beams at an angle onto a common intersection point. The optic is fabricated from translucent material with first and second refractive surfaces for receiving light beams from a source and refracting the light beams toward the common intersection point.
Abstract:
The invention relates to apparatus for detecting water-based residues in translucent bottles, in which energy in two parts of the spectrum in and near the infra-red region, in one of which parts (0.8 to 0.9 microns) water is relatively transparent and the other of which parts (1.2 to 1.6 microns) water is more strongly absorbent is transmitted through a bottle, and the intensities of the emergent energies in the two parts are separately measured by a silicon detector and a germanium detector, associated with respective collimator tubes and filters, and are compared to produce a signal indicative of the presence of water in the bottle.