Abstract:
An electro-holographic light field generator device comprises surface acoustic wave (SAW) optical modulators arranged in different directions. Specifically, some embodiments have SAW modulators arranged in pairs, nose-to-nose with each other, and have output couplers that provide face-fire light emission. These SAW modulators also possibly include SAW sense transducers and/or viscoelastic surface material to reduce crosstalk.
Abstract:
An optical filter device may include an optical fiber having a core and a cladding surrounding the core, the optical fiber having a tapered portion. The optical filter device may include an index selectable material surrounding the tapered portion and having an index of refraction being selectable based upon a physical characteristic. The optical filter device may include a device configured to change the index selectable material to select the index of refraction to selectively filter out a mode within the optical fiber.
Abstract:
An optical modulator includes: a substrate that having an optical waveguide that includes a split section that splits light into two light waves, a pair of arms through which the light waves propagate, and a combining section that combines the light waves from the pair of arms with each other; and an electrode that overlaps part of the optical waveguide and generates an electric field by a voltage applied to the electrode. The optical waveguide has a narrow portion that is narrower than another portion of the optical waveguide and is arranged so that the electrode does not overlap with the narrow portion.
Abstract:
An optical modulator includes: a substrate that having an optical waveguide that includes a split section that splits light into two light waves, a pair of arms through which the light waves propagate, and a combining section that combines the light waves from the pair of arms with each other; and an electrode that overlaps part of the optical waveguide and generates an electric field by a voltage applied to the electrode. The optical waveguide has a narrow portion that is narrower than another portion of the optical waveguide and is arranged so that the electrode does not overlap with the narrow portion.
Abstract:
An optical modulation device 1 includes a supporting body 2 including a pair of grooves 2b, 2c and a protrusion 2d between the grooves, a ridge par 6 including a channel type optical wave guide capable of multi mode propagation, a first side plate part 3A formed in a first side of the ridge part 6, a second side plate part 3B formed in a second side of the ridge part, a first adhesive layer 4A adhering the first side plate part 3A and the supporting body 2, a second adhesive layer 4B adhering the second side plate part 3B and the supporting body 2, and a third adhesive layer 4C adhering the ridge part 6 and the protrusion 2d. The device 1 further includes a first electrode 7A provided on a side face 6b of the ridge part on the first groove side, and a side face 3b and an upper face 3c of the first side plate part, and a second electrode 7B provided on a side face 6c of the ridge part 6 in the second groove side, the second groove 2c and a side face 3b and an upper face 3c of the second side plate part 3B. The first electrode 7A and the second electrode 7B apply a modulation voltage modulating light propagating in the channel type optical wave guide.
Abstract:
An apparatus comprising a parallel plate waveguide (PPWG) comprising two plates separated by a distance that supports a multimode wave, and a transmitter configured to emit a wave having a frequency from about one hundred Gigahertz (GHz) to about ten terahertz (THz) and to couple to one mode of the PPWG. Also disclosed is an apparatus comprising two plates substantially parallel to one another and separated by at least about five millimeters (mm), and an antenna coupled to the two plates and configured to transmit or receive a wave having a frequency from about one hundred GHz to about ten THz. Disclosed is a method comprising polarizing an electromagnetic beam in the first transverse electric (TE1) mode with respect to a PPWG comprising two plates, adjusting the diameter of the electromagnetic beam based on the separation between the plates, and sending the electromagnetic beam into the PPWG.
Abstract:
The present invention provides a set-reset flip-flop operating in an all-optical manner. In this invention, a set pulse is inputted from the setting port. In doing so, only oscillation in set mode is generated at the multi-mode interference portion in a waveguide. As a result, a non-inverting output Q is obtained from the non-inverting output port. This state is then continued even if the set pulse input goes off. Next, a reset pulse is inputted to the resetting port. In doing so, at the multi-mode interference portion, oscillation of light in the set mode is halted, and oscillation in the reset mode occurs. As a result, it is possible to obtain an inverting output Q-bar from the inverting output port. This state is then continued even if the reset pulse goes off.
Abstract:
A laser device emits a higher harmonic wave of multi-longitudinal mode laser light and is capable of realizing higher efficiency and higher performance in a simple and economical fashion. The laser device includes a light source formed from a semiconductor laser emitting a fundamental wave in multi-longitudinal mode, and a wavelength converting element formed from a polarization inversion element provided with two or more of polarization inversion regions, and each region has a period Δ that corresponds to the longitudinal mode constructing the fundamental wave, and the higher harmonic wave obtained by the polarization inversion element is in multi-longitudinal mode.
Abstract:
An optical digital-to-analog (D/A) converter and a method of optically converting digital data into analog form. In one embodiment, the optical D/A converter includes: (1) a splitter configured to receive and split an input coherent optical carrier into a plurality of mutually coherent optical carriers, (2) a switching stage coupled to the splitter and including a corresponding plurality of selector switches configured to pass or interrupt selected ones of the plurality of coherent optical carriers responsive to pattern bits, (3) an amplitude and phase offset stage coupled to the switching stage and including a corresponding plurality of amplitude and phase offset units configured to offset amplitudes or phases of passed ones of the plurality of mutually coherent optical carriers responsive to offset signals and (4) a combiner coupled to the amplitude and phase offset stage and configured to recombine the mutually coherent optical carriers to yield an optical output signal.