Abstract:
An optical parametric oscillator comprising two nonlinear crystals (4, 4') in a same resonant cavity (2), which also comprises wavelength selective means (M2, M4) to extract from the resonant cavity idler waves (I, I') generated by each nonlinear crystal (4, 4'). The disclosed oscillator is fed either with a single pump (P), or with two pumps (P, P'), being able to generate two independent signal waves (S, S') with tuneable wavelengths and power.
Abstract:
Embodiments of the present invention are directed to optoelectronic network switches. In one embodiment, an optoelectronic switch includes a set of roughly parallel input waveguides and a set of roughly parallel output waveguides positioned roughly perpendicular to the input waveguides. Each of the output waveguides crosses the set of input waveguides. The optoelectronic switch includes at least one switch element configured to switch one or more optical signals transmitted on one or more input waveguides onto one or more crossing output waveguides.
Abstract:
Methods and apparatus are disclosed for directing optical radiation to make multiple passes across an extended region of an electro-optic material, where during each pass the electro-optic material converts a portion of the optical radiation into terahertz radiation, and where the optical radiation is directed into the electro-optic material to cause an amplitude of the terahertz radiation generated from one or more earlier passes of the optical radiation to be constructively enhanced by the terahertz radiation generated from a later pass of the optical radiation.
Abstract:
The present invention provides a method and apparatus for filtering an optical signal. The method includes receiving at least one input optical signal, forming first and second optical signals using the at least one input optical signal, and modifying at least one portion of the first optical signal using a plurality of non-waveguiding electro-optic phase adjusters. The method also includes forming an output optical signal by combining the first optical signal, including the at least one modified portion of the first optical signal, with the second optical signal.
Abstract:
A fiber optical attenuator utilizing the cut-off phenomenon for single mode propagation of an optical wave down a single mode fiber, comprising an element such as a pixelated liquid crystal element, capable of spatially changing the phase across the cross section of an input optical signal. Such a spatial phase change is equivalent to a change in the mode structure of the propagating wave. The signal propagating in the single mode output fiber is attenuated in accordance with the extent to which higher order modes are mixed into the low order mode originally present. When the mode is completely transformed to higher order modes, the wave is effectively completely blocked from entering the output single-mode fiber, and the attenuation is high. The level of attenuation is determined by the fraction of the wave which is converted to modes other than the lowest order mode, and is thus controllable by the voltage applied to the pixels of the liquid crystal element.
Abstract:
Wavelength converter device (100), for generating a converted radiation at frequency Ω g through interaction between at least one signal radiation at frequency Ω g and at least one pump radiation at frequency Ω g, comprising * an input (1) for said at least one signal radiation at frequency Ω g; * a pump light source (3) for generating said at least one pump radiation at frequency Ω g; * an output (2) for taking out said converted radiation at frequency Ω g; * a structure (4) for transmitting said signal radiation, said structure (4) including one optical resonator (10) comprising a non-linear material, having an optical length of at least 40*η/2, wavelength η is the wavelength of the pump radiation, and resonating at the pump, signal and converted frequencies Ω p, Ω s and Ω¿g, ? characterized in that said structure (4) comprises a further optical resonator (20) coupled in series to said optical resonator (10), said further optical resonator (20) comprising a non-linear material, having an optical length of at least 40*η/2, wherein η is the wavelength of the pump radiation, and resonating at the pump, signal and converted Ω p, Ω s and Ω g; wherein by propagating through said structure (4) the pump and signal radiation generate said converted radiation by non-linear interaction within said optical resonators (10, 20).
Abstract translation:波长转换器装置(100),用于通过频率ωg至少一个信号辐射与频率ωg的至少一个泵浦辐射之间的相互作用产生频率ωg的转换辐射,包括*输入( 1)用于所述至少一个频率ωg的信号辐射; * *泵浦光源(3),用于以ω= g产生所述至少一个泵浦辐射; *输出(2),用于取出所述转换的 频率ωg的辐射;用于传输所述信号辐射的结构(4),所述结构(4)包括包括非线性材料的一个光学谐振器(10),其具有至少40 * eta / 如图2所示,波长eta是泵浦辐射的波长,并且在泵,信号和转换频率ωω,ω,ω和ω下共振,其特征在于所述结构(4)包括另外的光谐振器 (20),其与所述光学谐振器(10)串联耦合,所述另外的光学装置 (20)包括具有至少40 * eta / 2的光学长度的非线性材料,其中eta是泵浦辐射的波长,并且在泵谐振,信号和转换Omega> p, 其中通过传播所述结构(4),所述泵和信号辐射在所述光学谐振器(10,20)内通过非线性相互作用产生所述转换的辐射。
Abstract:
A structure is disclosed which comprises a thermochromic layer located between a front layer and a back layer, wherein the front layer is a dielectric and is in contact with the thermochromic layer, and wherein the back layer is reflective to infrared (IR) radiation. Below the thermochromic transition temperature of the thermochromic layer, the front layer and thermochromic layer are IR-transparent, so the structure is highly reflective to IR radiation because of the presence of the reflective back layer. Consequently, the structure has a low emittance in this state. Above the thermochromic transition temperature of the thermochromic layer, the device structure becomes IR-absorbent, so the reflectance of the structure is reduced and hence its emittance is increased. The front layer index-matches with the thermochromic layer above the transition temperature of the thermochromic layer to enable radiation to enter the thermochromic layer.
Abstract:
A variable optical attenuator including: a birefringent element positioned to separate an input optical signal into two spatially separated, orthogonally polarized beams; a LC modulator positioned to receive the orthogonally polarized beams and selectively alter their polarizations; a reflective element positioned to reflect the beams back through the LC modulator and the birefringent element, wherein the birefringent element recombines orthogonally polarized components of the reflected beams to produce an output optical signal; and a controller coupled to the LC modulator to selectively cause the LC modulator to alter the polarizations of the orthogonally polarized beams, wherein during operation the controller is responsive to a request to variably attenuate the intensity of the output optical signal relative to the intensity of the input optical signal to one of multiple non-zero attenuation settings.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren und eine Anordnung zur spektralen Verbreiterung von Laserpulsen für die nichtlineare Pulskompression. Das Verfahren und die Anordnung basieren auf dem Übergang von der spektralen Verbreiterung in einem Wellenleiter zur spektralen Verbreiterung in einem geeignet gestalteten Linsenleiter. Die Anordnung ist unempfindlich gegenüber Schwankungen der Pulsleistung, der Strahllage und der Strahlparameter. Die spektral verbreiterten Pulse sind gut komprimierbar und die Strahlqualität bleibt erhalten. Um das zu erreichen, wird die zur spektralen Verbreiterung erforderliche nichtlineare Phase auf hinreichend kleine Schritte aufgeteilt, die durch eine geeignete Propagation ohne Nichtlinearität getrennt werden. Dadurch wird die Limitierung auf Pulsleistungen kleiner als die kritische Leistung von Dielektrika überwunden und somit ein Pulsenergiebereich erschlossen, für den diespektrale Verbreiterung in Glasfasern nicht anwendbar ist. Da die Anordnung keine begrenzende Apertur besitzt und daher keine Leistung absorbiert oder abschneidet, ist sie in besonderer Weise geeignet, Pulse mit großer mittlerer Leistung zu komprimieren.