Abstract:
A remotely controllable electronic appliance has a radio frequency energy converter that receives a radio frequency energy from a remote controller and converts the radio frequency energy to electrical energy, where the electrical energy from the energy converter is used to supply power to receive a turn-on code. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
A remotely controllable electronic appliance has a radio frequency energy converter that receives a radio frequency energy from a remote controller and converts the radio frequency energy to electrical energy, where the electrical energy from the energy converter is used to supply power to receive a turn-on code. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
A field transmitter (250) includes field device circuitry (216) configured to measure or control a process variable. A first process control loop terminal (202) is configured to couple to a two-wire process control loop (206) which carries a loop current I loop . A second process control loop terminal (204) configured to couple to the two-wire process control loop (206). A switching regulator (212) has an input and an output. The output is coupled to the transmitter circuitry (216) and arranged to provide power to the transmitter circuitry (216). A variable voltage source (232) having an input electrically coupled to the first process control loop terminal (202), and a voltage output coupled to the input of the switching regulator (212) and a control input. The voltage output is a function of the control input.
Abstract:
A method and apparatus for online condition monitoring of a spent nuclear fuel dry cask storage system. The method comprises monitoring physical parameters of air flowing through inlet vents and outlet vents of a system and observing successive measurements of the parameter for deviations from the baseline to determine if the condition of the system has changed. The parameters may include temperature, pressure, density, mass and volumetric flow rate, nuclear radiation, impurities, humidity, salt content, acidity, chemistry, and fission product gases. The information may then be used directly or to develop an accumulation profile. The data may also be used in modeling or other simulations and to establish condition change signatures. The apparatus includes sensors placed over inlet and outlet vents, sensor interfacing hardware connected to the sensors, and a computer connected to the hardware to acquire, display, and analyze the sensor data and to display the status of the system.
Abstract:
A universal remote control device and methods for controlling multiple devices with a universal remote control device are provided. The method includes receiving a boot completed notification from a control unit of the universal remote control device and displaying a troubleshooting icon on a display of the universal remote control device. Upon receiving a user input selecting the troubleshooting icon, the method includes generating a power user interface menu enabling discrete control of power for each device controlled by the universal remote control device. The power user interface menu is displayed on a least a portion of the display of the universal remote control device.
Abstract:
An electronic apparatus and a control method are provided that are capable of reducing power consumption. The electronic apparatus having a normal mode in which first electric power is consumed and a power-saving mode in which second electric power lower than the first electric power is consumed includes a first sensor and a second sensor whose power consumption is lower than that of the first sensor. In the power-saving mode, supply of power to the first sensor is restricted, the second sensor is set to the power-saving mode, a trigger for restoring the power-saving mode to the normal mode is detected by using the second sensor set to the power-saving mode, and the power-saving mode is restored to the normal mode based on the detected trigger.