Abstract:
An electroluminescent (EL) device having an LED formed on a substrate with at least two electrodes formed over the substrate, and an EL unit formed between the electrodes. At least one of the electrodes is transparent. At least one of the electrodes is patterned to define independently controllable light-emitting areas. A cover is formed over the LED. The cover or substrate is transparent. A light-scattering layer is formed between the cover and substrate for scattering light. A low-index element, having an optical index lower than other optical indices, is formed between the scattering layer and the transparent cover or substrate. Additionally, a contrast-enhancement layer includes alternating light-absorbing portions and light-transmissive portions formed in the layer located between the light-scattering layer and the transparent substrate or cover through which light is emitted, wherein the light-absorbing portions and light-transmissive portions are located in each light-emitting area.
Abstract:
A high-luminance plasma display panel has at least has a plurality of discharge cells including a phosphor film emitting visible rays by excitation caused by ultraviolet light generated by the discharge of a discharge gas. The phosphor film has at least two layers of a phosphor layer and a reflecting layer, and the phosphor layer is arranged closer to the discharge space side than the reflecting layer. A film thickness Wt of the phosphor film is 40 μm or less, and a film thickness Wp of the phosphor layer, a particle diameter dp of a phosphor that is at least a part of components of the phosphor layer, a film thickness Wr of the reflecting layer, and a particle diameter dr of a reflecting material that is at least a part of components of the reflecting layer satisfy 2dp≦Wp≦5dp and 2dr≦Wr≦Wt−Wp.
Abstract:
According to the present invention, there is provided a method for forming a metal oxide film comprising, when a metal oxide film is formed by conducting a thermal treatment on a coating film containing an organic metal compound formed on an inner wall of a tube, performing an ultraviolet irradiation treatment or an ozone treatment on the coating film prior to or simultaneously with the thermal treatment.
Abstract:
An organic electroluminescent device includes, on a substrate, a pixel having a luminescent functional layer which is sandwiched by a first electrode and a second electrode, and a unit pixel group composed of a plurality of the pixels. A scattering portion which scatters luminescent light of the luminescent functional layer is provided in a pixel selected from the unit pixel group.
Abstract:
A high efficiency plasma display panel (PDP) that may be simply manufactured. The PDP includes a first substrate and a second substrate facing each other, a space between the first substrate and the second substrate is partitioned into discharge cells, a phosphor layer is formed within each discharge cell, electrodes participate in a discharge of each discharge cell, and a dielectric layer is formed on an external surface of at least one of the electrodes in a space between the first substrate and the second substrate. An alignment mark or a shaped alignment part is formed in the dielectric layer, and an alignment mark or a shaped alignment part corresponding to the alignment mark or the shaped alignment part of the dielectric layer is formed in at least one of the first substrate and the second substrate.
Abstract:
A method of constructing a flexible panel display using gold as a conductive element and a matrix of carbon fibers as emitters is presented. The invention provides a novel defined pixel width of three emitter fibers per cell wherein each cell is positioned within three emulsion layers of suspended nano-crystals stack positioned vertically atop one-another. Each of these respective layers is excited by a single carbon fiber. In the preferred embodiment, fiber length ends from each cell are positioned at the mid-point of each respective polymer layer thickness and produce one of red, green, or blue colors required to complete the image formation.
Abstract:
The present invention relates to a field-emission display having a faceplate formed with a phosphor layer and means irradiating an electron beam onto the phosphor layer in order to improve the characteristic of life of the device. The feature of the present invention is in the structure of a phosphor layer. The phosphor layer is expressed by a general formula: ZnS: M, Al where M is an activator of at least one of Cu, Ag and Au; and Al is a coactivator, in which the concentration of Al is higher than that of M. According to the present invention, the electrification characteristic of the phosphor is improved for lower resistance. The defect concentration of the surface of the phosphor is reduced. The filed-emission display which can realize improvement in the characteristic of life which has not been solved in the prior art can be made.
Abstract:
A method of constructing a flexible panel display using gold as a conductive element and a matrix of carbon fibers as emitters is presented. The invention provides a novel defined pixel width of three emitter fibers per cell wherein each cell is positioned within three emulsion layers of suspended nano-crystals stack positioned vertically atop one-another. Each of these respective layers is excited by a single carbon fiber. In the preferred embodiment, fiber length ends from each cell are positioned at the mid-point of each respective polymer layer thickness and produce one of red, green, or blue colors required to complete the image formation.
Abstract:
A display device free from a deterioration in luminescence efficiency is provided. In the display device 1 of the present invention, since an inorganic film 28 is formed after concave parts 13 in which luminescence portions 15 are positioned are filled with a filling film 27, no crack is formed in the inorganic film 28. Since the inorganic film 28 is made of a material having high gas tightness and heat conductivity (such as, diamond-like carbon or A1N), water and oxygen will hardly penetrate the luminescence portions 15, and heat of the luminescence portions 15 will be conducted to the inorganic film 28, so that the luminescence portions 15 do not reach high temperatures. Further, since a gap between first and second panels 10, 20 is filled with a resin film 29, the atmosphere does not enter from the outside. Because the luminescence portions 15 are free from damage from water, oxygen and heat, the display device 1 of the present invention has a prolonged life.
Abstract:
A system to form a thin-film phosphor layer on a substrate, the system comprising a deposition subsystem defining an enclosure to accommodate the substrate; a phosphor powder delivery subsystem configured to deliver, using a carrier gas, a phosphor powder from a source of the phosphor powder to the deposition subsystem; a polymer precursor delivery subsystem configured to deliver polymer precursors in a vapor phase to the deposition subsystem; and a control subsystem connected to the deposition subsystem, the phosphor powder delivery subsystem, and the polymer precursor delivery subsystem, wherein the control subsystem is configured to control the phosphor powder delivery subsystem to deliver the phosphor powder to the deposition subsystem for a first time interval to form a phosphor powder layer adjacent to the substrate, and the control subsystem is configured to control the polymer precursor delivery subsystem to deliver the polymer precursors to the deposition subsystem for a second time interval to form a polymer layer adjacent to the phosphor powder layer.