Abstract:
A disruptor apparatus comprises a nozzle comprising: a converging section; a diverging section; and a throat between the converging section and the diverging section. The disruptor apparatus also comprises a holder configured to receive a fluid conduit, which comprises an outlet located in the converging section; and a channel disposed about the holder and configured to guide a gas past the outlet of the fluid conduit, through the converging section, through the throat and into the diverging section where the gas travels at supersonic speed and establishes a standing shock wave in the diverging section. A mass spectrometer and a method are also described.
Abstract:
An atmospheric pressure ionization apparatus includes a chamber, an ion inlet structure, an electrode, a sample emitter, and a gas passage. The ion inlet structure includes a sampling orifice. The electrode includes an electrode bore. An ionization region is defined between the ion inlet structure and the electrode. The flared structure is coaxially disposed about the ion inlet structure, and extends along an outward direction that includes a radial component relative to the sampling axis. The sample emitter is oriented at an angle to the sampling axis for directing a sample stream toward the ionization region. The gas passage directs a stream of gas from a gas source to the chamber. The flared structure and the wall cooperatively form an outward-directed portion of the gas passage that extends annularly about the sampling axis and along the outward direction. The gas flows through the outward-directed portion, around the flared structure, and toward the ionization region and the electrode bore.
Abstract:
A disrupter apparatus comprises a nozzle comprising: a converging section; a diverging section; and a throat between the converging section and the diverging section. The disrupter apparatus also comprises a holder configured to receive a fluid conduit, which comprises an outlet located in the converging section; and a channel disposed about the holder and configured to guide a gas past the outlet of the fluid conduit, through the converging section, through the throat and into the diverging section where the gas travels at supersonic speed and establishes a standing shock wave in the diverging section. A mass spectrometer and a method are also described.
Abstract:
An apparatus and method for performing mass spectroscopy uses an ion interface to provide the function of removing undesirable particulates from an ion stream from an atmospheric pressure ion source, such as an electrospray source or a MALDI source, before the ion stream enters a vacuum chamber containing the mass spectrometer. The ion interface includes an entrance cell with a bore that may be heated for desolvating charged droplets when the ion source is an electrospray source, and a particle discrimination cell with a bore disposed downstream of the bore of the entrance cell and before an aperture leading to the vacuum chamber. The particle discrimination cell creates gas dynamic and electric field conditions that enables separation of undesirable charged particulates from the ion stream.
Abstract:
An on-axis ion source has an ionization chamber and an adjacent low-pressure region. The on-axis ion source also includes a capillary tube having an axial bore for supporting fluid communication between the ionization chamber and the adjacent low-pressure region, the axial bore of the capillary tube being substantially concentrically aligned with the orifice of a skimmer located downstream in the ion path from the capillary tube. A blocking element is provided in an aligned facing arrangement with the axial bore of the capillary tube and on an opposite side of the orifice relative to the capillary tube. The blocking element receives droplets or particles flowing through the axial bore of the capillary tube and passing through the orifice of the skimmer. The combination of an on-axis arrangement and the use of a blocking element results in improved signal-to-noise level due to enhanced ion transmission and reduction of noise arising from passage of undesolvated droplets and particles to the mass analyzer.
Abstract:
An Electrospray Ionisation ion source and an Atmospheric Pressure Chemical Ionisation ion source are disclosed which comprise a probe 1 comprising two co-axial capillary tubes 2,3. A blue-flame gas torch 6 is provided downstream of the probe 1 as a combustion source. An analyte solution is sprayed from an inner capillary tube 2 of the probe 1 and a combustible gas is supplied to an outer capillary tube 3 of the probe 1. The combustible gas supplies heat to aid desolvation of the droplets emerging from the probe 1 via combustion with the surrounding oxygen-containing atmosphere when combusted by the blue flame torch 6.
Abstract:
A mass spectrometer interface, having improved sensitivity and reduced chemical background, is disclosed. The mass spectrometer interface provides improved desolvation, chemical selectivity and ion transport. A flow of partially solvated ions is transported along a tortuous path into a region of disturbance of flow, where ions and neutral molecules collide and mix. Thermal energy is applied to the region of disturbance to promote liberation of at least some of the ionized particles from any attached impurities, thereby increasing the concentration of the ionized particles having the characteristic m/z ratios in the flow. Molecular reactions and low pressure ionization methods can also be performed for selective removal or enhancement of particular ions.
Abstract:
An apparatus for use in atmospheric pressure ionization includes a sample receiving chamber, a sample droplet source communicating with the sample receiving chamber, an outlet conduit, and a boundary. The outlet conduit defines a sampling orifice that communicates with the sample receiving chamber. The boundary is interposed between the sample receiving chamber and the sampling orifice and comprises an opening. The opening defines a first passage through which a drying gas is flowable into the sample receiving chamber in an elongated flow profile, and a second passage through which sample material is flowable from the sample receiving chamber toward the sampling orifice. The first passage is positioned in non-coaxial relation to the second passage. The first passage is configured to introduce the elongated flow profile of the drying gas into a pathway of droplets of the sample material flowing toward the second passage.
Abstract:
A mass spectrometer interface, having improved sensitivity and reduced chemical background, is disclosed. The mass spectrometer interface provides improved desolvation, chemical selectivity and ion transport. A flow of partially solvated ions is transported along a tortuous path into a region of disturbance of flow, where ions and neutral molecules collide and mix. Thermal energy is applied to the region of disturbance to promote liberation of at least some of the ionized particles from any attached impurities, thereby increasing the concentration of the ionized particles having the characteristic m/z ratios in the flow. Molecular reactions and low pressure ionization methods can also be performed for selective removal or enhancement of particular ions.
Abstract:
A mass spectrometer has an ion source for producing sample ions. The ions pass through an ion interface, to a reaction/collision cell section. An inn-neutral decoupling device is provided between the ion interface and the reaction/collision cell section, to provide substantial separation between ions and neutral particles, whereby only ions pass on to the reaction/collision cell section. The supersonic jet entering the spectrometer can have sufficient energy to cause the plasma gases, such as argon, to overcome the pressure differential between the reaction/collision cell and an upstream section of the spectrometer so as to penetrate into the reaction/collision cell; the decoupling device prevents this. The decoupling device can have offset apertures provided by plates or rods or other comparable arrangements, or can comprise a quadrupolar electrostatic deflector, an electrostatic sector deflector or a magnetic sector deflector.