Abstract:
There is disclosed an image reading apparatus constructed by an illuminating unit for illuminating an object in a line shape, an image forming optical system for forming a light, as an image, from the object illuminated by the illuminating unit, a line sensor for converting the light formed as an image by the image forming optical system into an image signal, and a frame for holding the illuminating unit and the line sensor, wherein a shape in which vertices of at least a part of the cross section of the illuminating unit are connected by straight lines is set to a polygon of a pentagon or more, so that an image can be stably read at a high quality.
Abstract:
An image reading apparatus comprises: a light source for irradiating light to a photographic photosensitive material; an image forming optical system for forming reflected or transmitted light emitted from a photosensitive film into an image; a film carrier having a shape correspomding to various types of photographic films to be loaded from the outside and supporting the photosensitive film; and an optical waveguide being replaceably attached to a predetermined reference attachment position and having a shape corresponding to the type of photographic film. Furthermore, there are provided a withdrawing mechanism for moving the optical waveguide from the reference attachment position in the case of an incorrect combination of the shape of the film carrier and the shape of the optical waveguide, and a detecting mechanism therefor.
Abstract:
A paper-separating plate is adapted for a paper-separating mechanism having a paper-separating roller. The paper-separating plate placed around a side of the paper-separating roller comprises a main body and a cushion. The main body has a surface and a plurality of grooves and the grooves are positioned on the surface. The cushion is positioned on the surface of the main body and covers the grooves. The cushion positioned over the partial grooves is elastically pressed onto the paper-separating roller. The grooves are linear and the direction of extending the linear grooves is substantially parallel with the axis of the paper-separating roller, the linear grooves neighboring one another or each other. Besides, the cushion is made of flexible material and the main body is made of rigid material.
Abstract:
The invention is a method and associated apparatus for mounting an optical subassembly of an optical reading device onto an image sensor subassembly of an optical reading device with use of solder as a bonding material. In accordance with the invention, solderable surfaces are formed on either or both an optical subassembly and an image sensor subassembly. For mounting of the optical subassembly onto the image sensor subassembly, an assembly station worker aligns optical and imaging elements by observing indicia corresponding to electrical signals generated by the image sensor under controlled conditions, and then, when alignment is established, solders the subassemblies at any interfaces that are defined by the solderable surfaces. The solderable surfaces of either or both the optical or image sensor assemblies may be made in irregular configurations having increased surface areas per unit three dimensional space relative to that of a smooth surface. In one embodiment, the solderable surfaces include a pin on one of the subassemblies and a hole on the remaining subassembly.
Abstract:
A light projection unit includes a substrate, a plurality of light emitting elements arrayed on the substrate in a main scanning direction and including light emitting surfaces, a light guide facing the light emitting surfaces to direct light projected from the light emitting elements onto an illumination target and including a first positioning portion, and a holder including a second positioning portion that engages the first positioning portion of the light guide to position the light guide on the holder. The first positioning portion of the light guide is positioned between centers of light emission of adjacent light emitting elements in the main scanning direction of the substrate when the first positioning portion engages the second positioning portion of the holder.
Abstract:
A fixture structure is disclosed that is able to independently adjust relative positions of constituent components in different directions and able to reduce workload of the relative position adjustment. The fixture structure includes plural members fixed with each other by screws, a first adjustment unit for adjusting relative positions of two or more of the members in a first direction and arranged on surfaces of the two or more members parallel to the first direction, and a second adjustment unit for adjusting relative positions of two of more of the members in a second direction intersecting with the first direction and arranged on surfaces of the two or more members parallel to the second direction.
Abstract:
An optical scanning device includes a light source, an optical system, and a housing. The light source projects a light beam. The housing includes a holder and encloses the optical system. The optical system includes a liquid crystal element held by the housing via the holder, to modulate a phase of the light beam projected from the light source against a scanned surface. The liquid crystal element includes a plurality of substantially transparent substrates, a liquid crystal layer, and a sealing member. One of the plurality of the transparent substrates has a size larger than any other transparent substrates and is positioned in the holder. The liquid crystal layer is sandwiched between the plurality of substantially transparent substrates. The sealing member seals the liquid crystal layer between the plurality of substantially transparent substrates.
Abstract:
The present disclosure relates to an image reading device, including: a light emitting portion; a light guiding member; a holding member that holds the light emitting portion and the light guiding member; and a case member that holds the holding member. In the image reading device, the light guiding member is shaped like a stick, of which end portion is disposed to face the light emitting portion. The holding member holds the light emitting portion and the light guiding member. In addition, the holding member has: and a holding portion that disposes the light guiding member along a main scanning direction, and positions and holds an end portion on the light emitting portion side in the main scanning direction. The case member holds the holding member.
Abstract:
An adjusting method for a lens unit used in an image reading apparatus which images image information of an original onto an image reading unit by the lens unit and reads the image information, the lens unit including rotationally-symmetrical lenses, a lens barrel including the rotationally-symmetrical lenses and an adjusting lens, the adjusting method including: performing rotational adjustment of the lens barrel with respect to the adjusting lens; and imaging an adjusted chart onto one-dimensional photoelectric transducers via the lens unit, obtaining contrast depth characteristics of images corresponding to at least three angles of field of the lens unit among images of the adjusted chart, and, according to the obtained contrast depth characteristics, performing position adjustment of the adjusting lens in at least one of an array direction of the one-dimensional photoelectric transducers, a direction orthogonal to the array direction and an optical axis direction of the lens unit.
Abstract:
A paper-separating plate is adapted for a paper-separating mechanism having a paper-separating roller. The paper-separating plate placed around a side of the paper-separating roller comprises a main body and a cushion. The main body has a surface and a plurality of grooves and the grooves are positioned on the surface. The cushion is positioned on the surface of the main body and covers the grooves. The cushion positioned over the partial grooves is elastically pressed onto the paper-separating roller. The grooves are linear and the direction of extending the linear grooves is substantially parallel with the axis of the paper-separating roller, the linear grooves neighboring one another or each other. Besides, the cushion is made of flexible material and the main body is made of rigid material.