Abstract:
An image forming apparatus has a scanning unit capable of forming a plurality of lines of an image simultaneously by scanning, in a main scanning direction, laser beam that has been emitted from a plurality of laser emitting devices. The apparatus has a memory for storing an error characteristic, in a sub-scanning direction with respect to an ideal scanning line in the main scanning direction, of a scanning line scanned by the scanning unit. A line on which image data is read out is changed over in accordance with a line changeover position in the main scanning direction based upon the error characteristic and a revised pixel position in the main scanning direction in the image data.
Abstract:
The present invention provides an image input apparatus. The image input apparatus includes a board having an image sensor; a supporting member having a first supporting portion and a second supporting portion; a first fastening member; and a second fastening member. The image input apparatus is characterized in that the board is rigidly secured on the first supporting portion of the supporting member with the first fastening member installed in the first supporting portion, and the board is movably supported on the second supporting portion of the supporting member by the second fastening member installed in the second supporting portion.
Abstract:
Sub-raster registration errors are compensated for through non-redundant overwriting. Data from adjacent rasters is written to a particular output raster so that the adjacent rasters share an influence at a point actually written to by a rendering device, thereby compensating for a sub-raster component of a registration error associated with writing to the particular point. If two writing passes per raster are used and the writing passes have equal influence (e.g., are written with equal power), then writing data from a first raster during a first pass and writing data from a second raster adjacent to the first raster during a second pass compensates for a sub-raster registration error of half a raster spacing. If two writing passes are associated with different influence (e.g., are written with ⅓ and ⅔ power respectively) and/or if additional writing passes are used, then addition sub-raster positions can be compensated for or emulated.
Abstract:
A image reading apparatus includes a plurality of point light sources, arranged in a straight line state, configured to output light for lighting a document situated on a contact glass from a lower side of the contact glass, a light leading member, positioned in front in a light outputting direction of the light output from the point light sources, configured to lead the light output from the point light sources so as to irradiate along a main scanning direction toward the document situated on the contact glass, and a photoelectric conversion element configured to receive reflection light from the document. The light leading member includes positioning means configured to make a gap between each of the point light sources arranged in a line state and the light leading member constant and make an arrangement direction of the point light sources be positioned along a longitudinal direction of the light leading member.
Abstract:
The present invention provides a light source apparatus in which wasteful cost increases can be suppressed during the manufacture of various types of light source apparatuses, and replacement of a broken light source can be performed at low cost, a recording apparatus using the light source apparatus, and an image forming apparatus comprising the recording apparatus. A plurality of optical units comprising optical members (a light source element and a lens) for outputting a single beam are combined separably in row form. A holder is used as means for holding the optical units in row form.
Abstract:
The optical scanning apparatus has a first light source, a second light source disposed in a side-by-side relationship with the first light source in a sub-scanning direction, a deflector deflecting respectively a first light beam outgoing from the first light source and a second light beam outgoing from the second light source, and scanning over different scanned surfaces with the light beams, a first optical member provided in a first optical path between the first light source and the deflector, wherein the first light beam outgoing from the first light source passes through, a second optical member provided in a second optical path between the second light source and the deflector, wherein the second light beam outgoing from the second light source passes through, disposed beside the first optical member in the sub-scanning direction, the second optical member having the same optical characteristic as the first optical member, a holding member that holds a side face of the optical member and a side face of the second optical member and positions the first optical member and the second optical member in a main-scanning direction; and an adjusting mechanism adjusting an attitude of the holding member.
Abstract:
A fixture structure is disclosed that is able to independently adjust relative positions of constituent components in different directions and able to reduce workload of the relative position adjustment. The fixture structure includes plural members fixed with each other by screws, a first adjustment unit for adjusting relative positions of two or more of the members in a first direction and arranged on surfaces of the two or more members parallel to the first direction, and a second adjustment unit for adjusting relative positions of two of more of the members in a second direction intersecting with the first direction and arranged on surfaces of the two or more members parallel to the second direction.
Abstract:
An image reader adopting an off-axial optical system, an adjustable imaging mirror and a CCD fixed to a highly rigid structure. Since the relative position between reflecting and imaging mirrors can be set highly accurately, adjusting only the CCD-mounting position allows a required specification of the read image to be met. The imaging mirror can easily be adjusted without distorting the reflecting surface. The reflecting and imaging mirrors, and the CCD-mounting-position adjuster are positioned directly to reflecting-mirror supporting sections, imaging-mirror supporting sections, and CCD supporting sections, which are integrated with a carriage casing, and fixed to them. The CCD is fixed to the carriage casing with the CCD-mounting-position adjuster. An imaging mirror close to a diaphragm and adjacent to the image is supported by a mirror adjusting plate, which can be displaced to adjust the position of the imaging mirror.
Abstract:
A image reading apparatus includes a plurality of point light sources, arranged in a straight line state, configured to output light for lighting a document situated on a contact glass from a lower side of the contact glass, a light leading member, positioned in front in a light outputting direction of the light output from the point light sources, configured to lead the light output from the point light sources so as to irradiate along a main scanning direction toward the document situated on the contact glass, and a photoelectric conversion element configured to receive reflection light from the document. The light leading member includes positioning means configured to make a gap between each of the point light sources arranged in a line state and the light leading member constant and make an arrangement direction of the point light sources be positioned along a longitudinal direction of the light leading member.
Abstract:
The image recording method and apparatus deflect light from a group of two-dimensionally disposed light source elements to move an image formed on a recording medium in accordance with a movement of the recording medium, or shift modulation data of the group of two-dimensionally disposed light source elements in a first moving direction of the recording medium on the group of two-dimensionally disposed light source elements in synchronism with the movement of the recording medium, and thereby have the image remain stationary relatively to the recording medium in the main scanning direction, as well as shift sequentially modulation data of the group of two-dimensionally disposed light source elements in a direction opposite to a second moving direction of the optical system in synchronism with a movement of the optical system in the auxiliary scanning direction, and thereby having the image also remain stationary relatively to the recording medium in the auxiliary scanning direction.