Abstract:
The plasma display panel is made up of a matrix of cells (c1,c2,c3) each filled with gas (4) and having two or more electrodes (5,6,7,8) to establish an electrical discharge in the cell. A protective layer covers the electrodes, providing resistance to the effects of ionic bombardment that occurs during the electrical discharge in the gas. The protective layer is made from a solid solution of a mixture of magnesium oxide and calcium oxide, which shows a greater resistance to bombardment than is shown by a protective layer made of magnesium oxide alone.
Abstract:
An ozone-generating apparatus includes: a plurality of discharge tubes each including: a first electrode having a tubular shape extending along a first axis; a second electrode extending along the first axis; and a dielectric extending along the first axis and disposed between the first electrode and the second electrode, the plurality of discharge tubes including a first discharge tube and a second discharge tube adjacent to the first discharge tube; and a connecting member electrically connecting the second electrode of the first discharge tube to the second electrode of the second discharge tube. The connecting member faces an end of the dielectric of the first discharge tube and an end of the dielectric of the second discharge tube.
Abstract:
An electron emission device includes a cathode electrode and a gate electrode, the gate electrode is separated and insulated from the cathode electrode, the gate electrode is a carbon nanotube layer, and the carbon nanotube layer includes a plurality of carbon nanotube wire-like structures. A display device that includes the electron emission device is also disclosed.
Abstract:
An electron emission device includes a cathode device and a gate electrode. The gate electrode is separated and insulted from the cathode device. The gate electrode includes a carbon nanotube layer having a plurality of spaces. A display device includes a cathode device, an anode device spaced from the cathode electrode and a gate electrode. The gate electrode is disposed between the cathode device and the anode device. The cathode device, the anode device and the gate electrode are separated and insulted from each other. The gate electrode comprises a carbon nanotube layer having a plurality of spaces.
Abstract:
A vacuum vessel that includes a first and a second substrate facing each other and extending across both an active area and a non-active area surrounding the active area, a sealing member arranged at peripheries of the first and the second substrates and adapted to maintain a vacuum between the two substrates, a plurality of wall type spacers arranged between the first and the second substrates while extending across the active area and a plurality of spacer supports arranged in the non-active area between the first and the second substrates, the plurality of spacer supports including a plurality of grooves adapted to receive the ends of respective ones of the plurality of wall type spacers, each spacer support having a height identical to or greater than a height of the plurality of wall type spacers.
Abstract:
A PDP does not suffer from dielectric breakdown even though a dielectric layer is thin, with the problems of conventional PDPs, such as cracks appearing in the glass substrates during the production of the PDP being avoided. To do so, the surface of silver electrodes of the PDP is coated with a 0.1-10 .mu.m layer of a metallic oxide on whose surface OH groups exist, such as ZnO, ZrO.sub.2, MgO, TiO.sub.2, Al.sub.2 O.sub.3, and Cr.sub.2 O.sub.3. The metallic oxide layer is then coated with the dielectric layer. It is preferable to form the metallic oxide layer with the CVD method. The surface of a metallic electrode can be coated with a metallic oxide, which is than coated with a dielectric layer. The dielectric layer can be made of a metallic oxide with a vacuum process method or the plasma thermal spraying method. The dielectric layer formed on electrodes with the CVD method is remarkably thin and flawless. When the dielectric layer is formed with the vacuum process method or the plasma spraying method, warping and cracks conventionally caused by baking the dielectric layer are prevented. Here, borosilicate glass including 6.5% or less by weight of alkali can be used as the glass substrate.
Abstract translation:即使电介质层较薄,PDP也不会受到电介质击穿,同时避免了在制造PDP期间在玻璃基板中出现的常规PDP的问题。 为此,PDP的银电极的表面涂覆有其表面存在OH基的金属氧化物如ZnO,ZrO 2,MgO,TiO 2,Al 2 O 3和Cr 2 O 3的0.1-10μm层。 然后用电介质层涂覆金属氧化物层。 优选用CVD法形成金属氧化物层。 金属电极的表面可以涂覆有被涂覆有介电层的金属氧化物。 电介质层可以用真空处理方法或等离子体热喷涂方法由金属氧化物制成。 用CVD法形成在电极上的电介质层非常薄且无瑕疵。 当使用真空处理方法或等离子喷涂方法形成电介质层时,防止了通常由电介质层烘烤引起的翘曲和裂纹。 这里可以使用包含6.5重量%以下的碱的硼硅酸盐玻璃作为玻璃基板。
Abstract:
A gas discharge tube of the present invention has an envelope for accommodating an anode for receiving thermoelectrons emitted from a thermionic cathode, a focusing electrode for focusing a path of the thermoelectrons from the thermionic cathode to the anode, and a discharge shielding plate consisting of a material having electrical insulating properties, the anode being arranged in contact with one side of the discharge plate, and the focusing electrode being arranged in contact with the other side of the discharge shielding plate. Since the anode and the focusing electrode are arranged in contact with both the sides of the discharge shielding plate consisting of an insulating material such as a ceramic, the positions of these electrodes are held at high accuracy, and the electrical insulating properties therebetween are maintained even at a high temperature during long-time continuous light emission. For this reason, a short circuit between the electrodes and variations in length of a discharge path can be prevented. Therefore, a gas discharge tube having a long service life and a high operational stability during long-time continuous light emission can be provided.