Abstract:
A gas discharge tube of the present invention has an envelope for accommodating an anode for receiving thermoelectrons emitted from a thermionic cathode, a focusing electrode for focusing a path of the thermoelectrons from the thermionic cathode to the anode, and a discharge shielding plate consisting of a material having electrical insulating properties, the anode being arranged in contact with one side of the discharge plate, and the focusing electrode being arranged in contact with the other side of the discharge shielding plate. Since the anode and the focusing electrode are arranged in contact with both the sides of the discharge shielding plate consisting of an insulating material such as a ceramic, the positions of these electrodes are held at high accuracy, and the electrical insulating properties therebetween are maintained even at a high temperature during long-time continuous light emission. For this reason, a short circuit between the electrodes and variations in length of a discharge path can be prevented. Therefore, a gas discharge tube having a long service life and a high operational stability during long-time continuous light emission can be provided.
Abstract:
A field emission light source device comprises an anode plate (110) and a cathode plate (120) spaced apart from each other, and an insulating support member (130) by which the anode plate (110) and the cathode plate (120) are integrally fixed. A vacuum-tight chamber is formed with the anode plate (110), the cathode plate (120) and the insulating support member (130). The anode plate (110) comprises a base (112) formed from transparent ceramic material and an anode conductive layer (114) disposed on one surface of the base (112). The cathode plate (120) comprises a substrate and a cathode conductive layer disposed on a surface of the substrate. The anode conductive layer (114) and the cathode plate (120) are disposed opposite each other. Because transparent ceramic has the advantages of good electrical conductivity, high light transmittance, stable electron-impact resistance performance and uniform luminescence, using transparent ceramic as the base of the anode plate in the field emission light source device can increase electron beam excitation efficiency effectively, increase light extraction efficiency of the field emission light source device, and finally increase its luminous efficiency. A manufacturing method of the field emission light source device is also provided.
Abstract:
A field emission light source device, comprising: cathode plate comprising substrate and cathode conductive layer disposed on surface of substrate, and anode plate comprising base formed from transparent ceramic material and anode conductive layer disposed on one surface of base, and insulating support member by which cathode plate and anode plate are integrally fixed, and vacuum-tight chamber formed with anode plate, cathode plate and insulating support member; anode conductive layer and the cathode plate are disposed opposite each other. Because of advantages of good electrical conductivity, high light transmittance, stable electron-impact resistance performance and uniform luminescence, using transparent ceramic as the base of the anode plate in the field emission light source device can increase electron beam excitation efficiency effectively, increase light extraction efficiency of the field emission light source device, and finally increase its luminous efficiency. A manufacturing method of the field emission light source device is also provided.
Abstract:
Support electrodes are provided for individually supporting a plurality of dynodes arranged inside of a vessel of an electron tube, such as photomultiplier tube. A black spacer formed from a ceramic material is disposed between the support electrodes. The black spacers are formed with elemental composition having content of MnO suppressed to 3 wt % or less. Current leaks, which are the cause of dark current, and abnormal generations of light during photomultiplication can be reduced, thereby improving the signal-to-noise ratio of the electron tube.