Abstract:
A medical diagnostic ultrasound system is described in which ultrasonic B mode tissue information and Doppler flow information is acquired from a volumetric region of the body and processed in an interleaved sequence to render a three dimensional image. The three dimensional rendering processes the B mode and Doppler flow information to give priority to tissue information, flow information, or a blend of the two.
Abstract:
An ultrasonic diagnostic system and scanning technique are described for producing three dimensional ultrasonic image displays utilizing power Doppler signal information. In a preferred embodiment the power Doppler signal information is displayed in the absence of structural (B mode) information to reduce image clutter and provide three dimensional image segmentation. An ultrasonic scanning technique is presented for acquiring diagnostic three dimensional ultrasonic images of power Doppler intensity through manual hand scanning of a patient, without the need for specially fabricated scanning mechanisms or devices.
Abstract:
An ultrasonic endoscopic probe is provided with an articulating distal tip (14) at which an ultrasonic transducer (130) is located. The articulating section (30) of the probe can be locked in an articulated position by a lock control (28,28') located at a control section (10) of the probe. The locking force is variably selectable by the user, so that the articulating section (30) will be locked in position by a desired force. The articulating section (30) is controlled by cables (74,76,129), which include cable tension adjustments (70a,70b) that also serve to delimit the range of articulation. The articulating section (30) is formed of alternating pivot rings (120) with intervening polymeric pivot beads (106), which provide repetitively smooth articulation. The ultrasonic transducer (130) is rotatable to steer the acoustic scan plane during use, and a sliding membrane (164) between the transducer (130) and its acoustic window (162) allows the transducer (130) to rotate smoothly without sticking.
Abstract:
An ultrasonic diagnostic imaging system is provided in which a portion of an ultrasonic image can be selected for enlarged display as a "zoom" image. When the image portion is displayed in its enlarged format, the bandwidth of a filter in the ultrasonic information path is extended to increase the information content of the image portion when displayed in its enlarged format. The bandwidth is continuously optimized to maximize information content in consideration of the characteristics of the display while preventing the generation of scintillation artifacts caused by attempts to display information of an excessive bandwidth.
Abstract:
An ultrasonic diagnostic system and scanning technique are described for producing three dimensional ultrasonic image displays utilizing power Doppler signal information. In a preferred embodiment the power Doppler signal information is displayed in the absence of structural (B mode) information to reduce image clutter and provide three dimensional image segmentation. An ultrasonic scanning technique is presented for acquiring diagnostic three dimensional ultrasonic images of power Doppler intensity through manual hand scanning of a patient, without the need for specially fabricated scanning mechanisms or devices.
Abstract:
An ultrasonic diagnostic system is provided which detects the presence of coated microbubble contrast agents in the body of a patient by transmitting ultrasonic energy which causes the destruction of the coated microbubbles and detects the microbubble destruction through phase insensitive detection and differentiation of echoes received from two consecutive ultrasonic transmissions. The destruction of a microbubble can also be used as a point source of acoustic energy for aberration correction, whereby the timing of the beamformer is adjusted from an analysis of beamformer signals resulting from a detected microbubble destruction event.
Abstract:
An ultrasonic diagnostic transducer array (16) is provided for providing electronic focusing in the longitudinal plane (L) and elevational (E) focusing. Elements (e₁,e₂...) of the array (16) are subdiced in the elevational direction (E) to provide subelements (1-2,2-2,3-2...) with aspect ratios varying in proportion to their distance to the central longitudinal axis of the array. Such variation affords varying electro-mechanical coupling coefficients to the subelements such that the intensity of the transmitted energy is centered about the central longitudinal axis. In a second embodiment (not represented) elements exhibit extensions in the elevational direction which vary in proportion to their displacement from the longitudinal center of the array. The extended elements are acoustically separated into subelements in the elevational direction to provide elevational focusing or spatial compounding of the transmitted acoustic energy.
Abstract:
An ultrasonic diagnostic imaging system is provided which scans an image region to receive a plurality of spatially arranged lines of ultrasonic image information signals. These ultrasonic line information signals are used in an interpolater to interpolate one or more lines which are spatially interlineated between each pair of spatially adjoining received lines. These interpolated lines are produced using either the received RF or demodulated IF ultrasonic image information signals. The interpolated lines are produced prior to scan conversion, and preferably prior to nonlinear processing such as detection or log compression to reduce spatial aliasing artifacts. In one preferred embodiment the interpolater comprises a transversal filter of four taps which is responsive to received line information signals from a common range or depth. In a second embodiment the interpolater is adaptively responsive to motion to select samples for interpolation which would be spatially at the same range in the absence of motional effects.
Abstract:
A velocity estimation technique is provided for a pulse-echo ultrasonic diagnostic system in which a two dimensional array of samples is acquired from a sample volume. The two dimensions of the array are depth, in which echo signal samples are acquired in response to transmission of a pulse to the sample volume, and pulse time, in which samples are acquired in response to transmission of the pulses in the pulse ensemble to the sample volume. Two autocorrelation calculations are performed on the array, one in the depth dimension and another in the pulse time dimension to yield two correlation functions, the first related to echo frequency and the second related to the Doppler frequency. The two correlation functions are then employed in a Doppler velocity estimation to determine the velocity of motion at the sample volume. The technique utilizes the full information content present in the bandwidth of the received echo signals, thereby overcoming inaccuracies due to depth dependent frequency decline or coherent signal cancellation. Since accuracy is premised upon the number of samples in the array and not its size in a particular dimension, performance can be tailored to favor frame rate or axial resolution while maintaining the accuracy of velocity estimation.