Abstract:
A process for the production of a ketone having a carbon number between about 20 and about 40 comprising contacting fatty acids containing from about 10 to about 21 carbons atoms with a hydrotalcite catalyst under conditions effective to decarboxylate said acids. More particularly said decarboxylation conditions comprise: a temperature in the range between about 300°C and about 400°C; a pressure in the range between about 0.01 and about 5 bar; and a weight hourly space velocity (WHSV) of from about 0.1 to about 10 hr-1.
Abstract:
An improved alkylation process utilizing a solid-acid catalyst comprising a rare earth containing zeolite and a hydrogenation metal is disclosed.
Abstract:
Fischer-Tropsch process for the conversion of carbon monoxide and hydrogen to C5+ hydrocarbon mixtures in which process use is made of Fischer-Tropsch catalyst particles and fluid catalytic cracking (FCC) catalyst particles. The FCC catalyst can be a fresh FCC catalyst, or an equilibrium catalysts (E-cat).
Abstract:
The present invention relates to a process for the catalytic alkylation of hydrocarbons comprising (i) reacting an alkylatable compound with an alkylation agent over a solid acid alkylation catalyst to form an alkylate, and (ii) regenerating said catalyst under mild regeneration conditions in the presence of hydrogen and hydrocarbon, wherein the hydrocarbon comprises at least a portion of the formed alkylate.
Abstract:
A process for the production of a ketone having a carbon number between about 20 and about 40 comprising contacting fatty acids containing from about 10 to about 21 carbons atoms with a hydrotalcite catalyst under conditions effective to decarboxylate said acids. More particularly said decarboxylation conditions comprise: a temperature in the range between about 300°C and about 400°C; a pressure in the range between about 0.01 and about 5 bar; and a weight hourly space velocity (WHSV) of from about 0.1 to about 10 hr-1.
Abstract:
The present invention pertains to a process for preparing a catalyst composition wherein at least one Group VIII non-noble metal component and at least two Group VIB metal components are combined and reached in the presence of a protic liquid, after which the resulting composition is isolated and dried, the total of the Group VIII and Group VIB metal components, calculated as oxides, making up at least 50 wt.% of the catalyst composition, calculated on dry weight characterised in that an organic oxygen-containing additive is added prior to, during, or subsequent to the combining and reacting of the metal components in such and amount that the molar ratio of the total amount of Group VIII and Group VIB metal components is at least 0.01. The invention also pertains to additive-containing catalysts obtained by this process, and to their use in hydroprocessing.
Abstract:
This patent describes economical and environment-friendly processes for the synthesis of Mg-containing non-Al anionic clays. It involves (hydro)thermally reacting a slurry comprising a Mg metals source with a trivalent metals source to directly obtain Mg-containing non-Al anionic clay, the Mg sources being an oxide, hydroxide or a carbonate. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity proudcts that contain anionic clays.
Abstract:
Hydrocarbon conversion process comprising the steps of (a) suspending catalyst particles comprising a layered material in a first, polar hydrocarbon, employing conditions such as will cause delamination of the layered material to form a suspension comprising particles with a size of less than 1 micron, (b) optionally adding the suspension to a second hydrocarbon, (c) converting the first and/or the optional second hydrocarbon in the presence of said delaminated layered material, and (d) separating the delaminated material from the first and the optional second hydrocarbon. This process provides an economically desired way of converting hydrocarbons using small catalyst particles.