Abstract:
A method for conducting medium-chain acyl-CoA dehydrogenase (MCAD) and very- long-chain acyl-CoA dehydrogenase (VCAD) enzymatic activity assays is provided. The method may include, but is not limited to, preparing a sample; preparing an enzyme- specific substrate/reagent mixture; mixing an aliquot of the prepared sample with an aliquot of the enzyme-specific substrate/reagent mixture; reading absorbance in the range of about 600 nm; incubating the prepared sample and enzyme-specific substrate/reagent mixture; and reading absorbance in the range of about 600 nm at various time intervals.
Abstract:
Droplet actuator apparatus and system are provided. An apparatus comprises: a microfluidics system having an insertion slot for insertion of a droplet actuator; a bottom plate against which the droplet actuator would slide when inserting the droplet actuator into the insertion slot; and means for forcing a substrate in the droplet actuator parallel to the bottom plate, wherein warpage in the substrate is corrected.
Abstract:
An apparatus, comprising a microfluidics system having an insertion slot for insertion of a droplet actuator; a bottom plate against which the droplet actuator would slide when inserting the droplet actuator into the insertion slot; and means for forcing a substrate in the droplet actuator parallel to the bottom plate, wherein warpage in the substrate is corrected.
Abstract:
A method of providing a droplet comprising one or more reagents, the method comprising, depositing a first aqueous droplet comprising the one or more reagents on a surface; drying the droplet to yield a dried composition on the surface comprising the one or more reagents; covering the dried composition with oil; and causing a second aqueous droplet in the oil to contact the dried composition and thereby resuspend one or more reagents.
Abstract:
A method of preparing a sample for conducting an assay, the method comprising providing an input sample comprising glycoproteins, capturing glycoproteins from the input sample on a solid support, and washing the sample support to remove unbound portions of the input sample.
Abstract:
The invention relates to a droplet actuator device and methods for integrated sample preparation and analysis of a biological sample. A droplet actuator device is provided for conducting droplet operations. The droplet actuator device may include a bottom substrate and a top substrate separated from each other to form a gap therebetween; an arrangement of droplet operations electrodes arranged on one or both of the bottom and/or top substrates for conducting droplet operations thereon; a reagent storage layer comprising one or more compartments bound to the top substrate; and one or more openings arranged to provide a fluidic path from the one or more compartments into the gap, upon breach of a breachable seal separating the one or more compartments and openings.
Abstract:
The invention provides droplet actuator devices for facilitating certain droplet actuated molecular techniques. In one embodiment, the invention provides droplet actuators that facilitate droplet operations in three dimensions. In another embodiment, the invention provides for cost-effective production of droplet actuators. In another embodiment, the invention provides for replacing one or more components of a droplet actuator. In another embodiment, the invention provides droplet actuators using printed conductive inks to form electrodes and/or ground planes. In another embodiment, the invention provides a magnetic clamping fixture for assembling droplet actuators. In another embodiment, the invention provides simple, low cost power sources for use in combination with microfluidic systems. In another embodiment, the invention provides an immunoassay multiplexing platform that uses digital microfluidics and real-time imaging of flash-based chemiluminescent signals. In still another embodiment, the invention provides droplet actuator devices that are fabricated using a plasma treatment process to raise substrate surface energy.
Abstract:
The present invention provides modified droplet actuator systems, software, and software-executed methods for use in droplet actuator operation and droplet actuator systems that are configured and programmed to execute such software. An aspect of the software components of the invention is an interface description file for each hardware component of a microfluidics system that allows hardware components to be changed without modifying the program for performing droplet operations protocols. Another aspect of the software components of the invention is the establishment of electrode-to-electrode relationships and other aspects of droplet actuator configurations, which may be used when programming droplet operations protocols. Another aspect of the software components of the invention is a physical design library of predefined electrode elements that may be used by a droplet actuator designer when constructing a layout of electrodes. Another aspect of the software components of the invention is a droplet actuator description file that contains the physical and electrical description of the droplet actuator. Another aspect of the software components of the invention is a router component for determining routes of droplet operations in a droplet actuator. Another aspect of the software components of the invention is the use of tri-state vectors for programming sequences in a droplet actuator. Still other aspects are provided.
Abstract:
The present invention relates to bead incubating and washing on a droplet actuator. Methods for incubating magnetically responsive beads that are labeled with primary antibody, a sample (i.e., analyte), and secondary reporter antibodies on a magnet, on and off a magnet, and completely off a magnet are provided. Also provided are methods for washing magnetically responsive beads using shape-assisted merging of droplets. Also provided are methods for shape-mediated splitting, transporting, and dispensing of a sample droplet that contains magnetically responsive beads. The apparatuses and methods of the invention provide for rapid time to result and optimum detection of an analyte in an immunoassay.
Abstract:
The invention provides a method of redistributing magnetically responsive beads in a droplet. The method may include providing a droplet including magnetically responsive beads. The droplet may be provided within a region of a magnetic field having sufficient strength to attract the magnetically responsive beads to an edge of the droplet or towards an edge of the droplet, or otherwise regionalize or aggregate beads within the droplet. The method may also include conducting on a droplet operations surface one or more droplet operations using the droplet without removing the magnetically responsive beads from the region of the magnetic field. The droplet operations may in some cases be electrode -mediated. The droplet operations may redistribute and/or circulate the magnetically responsive beads within the droplet. In some cases, the droplet may include a sample droplet may include a target analyte. The redistributing of the magnetically responsive beads may cause target analyte to bind to the magnetically responsive beads. In some cases, the droplet may include unbound substances in a wash buffer. The redistributing of the magnetically responsive beads causes unbound substances to be freed from interstices of an aggregated set or subset of the magnetically responsive beads.