Abstract:
A wireless transmit/receive unit (WTRLJ) 11 uses an oscillator providing accuracy for synchronized communications parameters in an active mode (Fig. 1 , WTRLJ 11), and operates at reduced power during a discontinuous reception (DRX) mode (Fig. 1 WTRU 12). A real time clock (RTC) 28 is used as the frequency standard during the reduced power operation, and a frequency adjustment is effected while the RTC 28 is used as the frequency standard. By effecting the frequency adjustment, the RTC 28 is able to be used as the frequency standard for substantial time periods, thereby reducing power consumption of the WTRU 12 during the DRX mode.
Abstract:
In a wireless communication system, a method and apparatus for noise estimation of a received OFDM communication signal, wherein the signal comprises a data frame with a preamble having at least one long training field (LTF) containing two identical OFDM symbols comprise examining the LTF for identical OFDM symbols. The noise power in the signal is estimated and the received signal power is measured. The signal to noise ratio is calculated and the signal power is determined by subtracting the noise power from the signal noise.
Abstract:
A smart antenna steering algorithm performs a periodic re-scan at an end of a sustained use period and before a next sustained use period. During a sustained use period, a re-scan of the other antenna beams is not performed. The periodic re-scan is performed on alternate antenna beams that were selected when the preferred antenna beam was selected. The steering algorithm monitors a quality metric of the alternate antenna beams as well as a quality metric for the preferred antenna beam. If the quality metric of the preferred antenna beam is less than the quality metrics of anyone of the alternate antenna beams, then the alternate antenna beam corresponding to the quality metric having a higher value is selected for the next sustained use period.
Abstract:
A method and apparatus for controlling enhanced dedicated channel (E-DCH) transmissions are disclosed. An enhanced uplink medium access control (MAC-e/es) entity processes a received scheduling grant to calculate a serving grant. The MAC-e/es entity determines whether both a hybrid automatic repeat request (H-ARQ) process for scheduled data and scheduled data are available. If an H-ARQ process for scheduled data and scheduled data are available, the MAC-e/es entity determines whether a serving grant exists. The MAC-e/es entity calculates a remaining power based on maximum allowed power and restricts an E-DCH transport format combination (E-TFC) based on the remaining power. The MAC-e/es entity selects an E-TFC using the serving grant and generates a MAC-e protocol data unit. The MAC-e/es entity may process the received scheduled grant is at each transmission time interval or may store the received scheduled grant in a grant list until there is E-DCH data to transmit.
Abstract:
The present invention is related to a method and apparatus for transmitting concatenated frames (400) in a wireless communication system comprising a plurality of mesh points (MPs). In one embodiment, a first MP transmits a data stream to a second MP, wherein th data stream is further transmitted to a third MP as a final destination. The second MP receives the data stream from the first MP. The second MP transmits a concatenated frame (400) to the first and third MPs.
Abstract:
In a wireless communication system comprising at least one wireless transmit/receive unit (WTRU) and a trusted entity, a method and apparatus for processing data during an event, includes storing data in a memory of the WTRU. The stored data is classified in the memory of the WTRU. The WTRU detects an event and transmits a notification signal to the trusted entity in response to the event detected. The trusted entity transmits a readiness signal to the WTRU. The WTRU transmits data classified for transfer to the trusted entity, and the trusted entity stores the data classified for transfer in a memory of the trusted entity.
Abstract:
A wireless communication method and apparatus for generating a scheduling grant based on a relative grant are disclosed. A wireless transmit/receive unit (WTRU) receives an absolute grant from a serving radio link set (RLS) and receives a relative grant from the serving RLS and at least one non-serving radio link (RL). The WTRU decodes enhanced dedicated channel (E-DCH) absolute grant channel (E-AGCH)E-AGCH signals to detect an absolute grant, and decodes E-DCH relative grant channel (E-RGCH)E-RGCH signals to detect at least one relative grant. The WTRU then calculates a serving grant based on the detected absolute grant and/or the relative grant(s). The relative grant may be detected by performing a hypothesis test on the E-RGCH signals. A multiple alternative hypothesis test is performed for detecting the E-RGCH signals from the serving RLS and a binary hypothesis test is performed for detecting the E-RGCH signals from the at least one non-serving RL. A reliability test may be further performed on the E-RGCH signals.
Abstract:
A method and apparatus for selecting a serving cell/Node-B in a single carrier frequency division multiple access (SC-FDMA) system are disclosed. For intra-Node-B serving cell selection, a serving Node-B measures channel quality indicators (CQIs) of each subcarrier block in an uplink of each cell controlled by the serving Node-B and selects a new serving cell based on the CQIs. The serving Node-B reports the selected new serving cell to a wireless transmit/receive unit (WTRU). For inter-Node-B serving cell selection, each of a plurality of Node-Bs measures a CQI of each of a plurality of subcarrier blocks in an uplink transmission in each cell controlled by each Node-B and forwards the CQIs to a serving cell selection entity. The serving cell selection entity selects a new serving cell/Node-B based on the CQIs. The serving cell selection entity may be a centralized access gateway, a current serving Node-B or a WTRU.
Abstract:
In one embodiment, a signal associated with a service not permitted in the controlled area of a wireless transmit/receive unit is received. An identifier is sent indicating that the WTRU is in a controlled area. In a second embodiment, the transfer of data associated with a controlled area is controlled. In the controlled area, the transfer of certain data is restricted. The data associated with the controlled area is collected. The collected data is identified as being associated with the controlled area. The transfer of the identified collected data is restricted, where data that is not identified as being associated with the controlled area is not restricted.
Abstract:
The present invention is related to a method and system for transferring wireless transmit/receive unit (WTRU)-specific information to support enhanced uplink (EU) operation in a wireless communication system. A radio network controller (RNC) obtains WTRU-specific information, and transfers the WTRU-specific information to the Node-Bs. Each Node-B is configured to schedule uplink transmissions from a WTRU and utilizes the WTRU-specific information in operation of EU transmissions.