Abstract:
Extraction methods that allow a molecular complex (e.g., an organelle) to be extracted from a sample by employing pressure cycling are described.
Abstract:
The systems and techniques of the present invention can also synergistically utilize mechanical disruption processes with the use of high hydrostatic pressure extraction, such as pressure cycling extraction techniques to achieve high yield of difficult to extract sample constituents without generating high shear stress or high temperatures.
Abstract:
Devices and methods for sample preparation via pressure cycling technology are disclosed. The device for sample preparation comprises a tube having an inner surface, a top, and a bottom, the tube configured to contain a sample at the bottom and to be received into a pressure chamber for sample preparation, a cap detachably connected to the top of the tube, and a tapered elongate member extending from the cap into the tube, the tapered elongate member configured to contact the inner surface of the tube and the sample in the bottom of the tube, wherein the tube is deformable such that in operation under pressure the tube is deformed against the tapered elongate member to promote disruption of the sample.
Abstract:
Methods for cell lysis and purification of biological materials, involving subjecting a sample to high pressure. Also featured is an apparatus for practicing the methods.
Abstract:
A pressure cycling system includes a reaction chamber configured to receive a sample and a charge pump in fluid communication with the reaction chamber. The charge pump is operable to convey a fluid from a fluid source toward the reaction chamber. The system also includes a check valve disposed between the charge pump and the reaction chamber. The check valve is operable to inhibit the flow of fluid from the reaction chamber toward the charge pump. A pressure intensifier is in fluid communication with the reaction chamber. The pressure intensifier is pneumatically operable to adjust a pressure in the reaction chamber. A controller is configured to control operation of the charge pump and the pressure intensifier. The controller is configured to pressurize the reaction chamber to a first pressure through operation of the charge pump. The controller is also configured to fluctuate the pressure in the reaction chamber between a second pressure and a third pressure through operation of the pressure intensifier.