Abstract:
Systems and methods are presented for using a mobile multi-radio access technology (multi-RAT) device for locating an individual, for example, in a search-and-rescue application. The multi-RAT device may permit the individual's cell phone to attach to the mobile multi-RAT device, and then may use a directional antenna to locate the individual. Various embodiments of such a device are described.
Abstract:
In this invention, we disclose methods for enabling ad hoc cellular base station functionality within a user equipment when the connection quality between a base station and the user equipment is limited or nonexistent. These methods include measuring a connection quality between a user equipment and its serving base station. If the connection quality is below a threshold, the user equipment can enable its internal ad hoc cellular base station functionality. This is done by running a software within the user equipment that (a) checks the connection quality periodically, and (b) enables ad hoc cellular base station functionality of the connection threshold dips below a certain value. In one embodiment, that threshold could be the same threshold value that a user equipment would use if it were making a decision to handoff to another base station based on poor connection quality.
Abstract:
We disclose systems and methods of dynamically virtualizing a wireless communication network. The communication network is comprised of heterogeneous multi-RAT mesh nodes coupled to a computing cloud component. The computing cloud component virtualizes the true extent of the resources it manages and presents an interface to the core network that appears to be a single base station.
Abstract:
In this invention, we disclose a multimedia streaming base station used preferably in a wireless communication network. The multimedia streaming base station is capable of capturing, storing, encoding, and transmitting multimedia via a local multimedia capture device. The multimedia base station can be a heterogeneous multi-RAT node, in which case the wireless communication network could be a heterogeneous mesh network. The multimedia base station could by a dynamic mesh node in alternate embodiments. Additional embodiments of the present invention include methods for facilitating streaming of locally captured multimedia content.
Abstract:
Systems and methods are disclosed to address inter-cell interference in a heterogeneous network. In one embodiment, a system is disclosed, comprising: a coordinating node situated between a radio access network and a core network; and a first base station in the radio access network in communication with the coordinating node, wherein: the coordinating node has a coordinating scheduler with a first scheduling period; the first base station has a first base station scheduler with a second scheduling period shorter than the first scheduling period; the coordinating scheduler is configured to send a resource reservation list and a resource restriction list to the first base station scheduler once during each first scheduling period; and the first base station is configured to receive the resource reservation list and the resource restriction list and to use the resource reservation list and the resource restriction list when performing mobile device resource scheduling.
Abstract:
This application discloses methods for creating self-organizing networks implemented on heterogeneous mesh networks. The self-organizing networks can include a computing cloud component coupled to the heterogeneous mesh network. In the methods and computer-readable mediums disclosed herein, a processor receives an environmental condition for a mesh network. The processor may have measured the environmental condition, or it could have received it from elsewhere, e.g., internally stored information, a neighboring node, a server located in a computing cloud, a network element, user equipment (“UE”), and the like. After receiving the environmental condition, the processor evaluates it and determines whether an operational parameter within the mesh network should change to better optimize network performance.
Abstract:
This invention discloses a heterogeneous mesh network comprised of multiple radio access technology nodes, wherein nodes can function dynamically, switching roles between client and server. Moreover, these nodes can operate in a heterogeneous fashion with respect to one another. In an alternate embodiment, the invention describes a mesh network comprised of nodes operating over TV white-space. This invention additionally discloses self-organizing network embodiments and embodiments that include novel methods of monitoring operational parameters within a mesh network, adjusting those operational parameters, and creating and implementing routing tables.
Abstract:
This invention discloses a heterogeneous mesh network comprised of multiple radio access technology nodes, wherein nodes can function dynamically, switching roles between client and server. Moreover, these nodes can operate in a heterogeneous fashion with respect to one another. In an alternate embodiment, the invention describes a mesh network comprised of nodes operating over TV white-space. This invention additionally discloses self-organizing network embodiments and embodiments that include novel methods of monitoring operational parameters within a mesh network, adjusting those operational parameters, and creating and implementing routing tables.