Magnetic Soil Remediation Agent for Soil Heavy Metal Pollution, Preparation Method and Use Thereof

    公开(公告)号:US20220356399A1

    公开(公告)日:2022-11-10

    申请号:US17732539

    申请日:2022-04-29

    Abstract: A magnetic soil remediation agent for soil heavy metal pollution and a preparation method and application thereof are provided. The magnetic soil remediation agent is prepared by using remediation agent framework material and magnetic core material as raw materials, and heavy metal collector as modifier; said framework material is silicon dioxide activated by strong alkali; said magnetic core material comprises magnetic materials Fe3O4 and γ-Fe2O3; said modifier comprises ethylenediaminetetraacetic acid (EDTA, nitrilotriacetic acid trisodium salt (NTA, (S,S)-ethylenediamine-N,N-disuccinic acid trisodium salt (EDDS) and mercaptoethylamine. The remediation agent of the present invention can effectively passivate the heavy metals in the soil, reduce their available contents, and inhibit the absorption of heavy metals by plants.

    EPITAXIAL WAFER AND METHOD OF FABRICATING THE SAME, AND ELECTROCHEMICAL SENSOR

    公开(公告)号:US20220214298A1

    公开(公告)日:2022-07-07

    申请号:US17608973

    申请日:2019-05-15

    Inventor: Richard NOTZEL

    Abstract: Disclosed are an epitaxial wafer and a method of fabricating the same, and an electrochemical sensor, wherein the reference electrode comprises: a substrate (11); an InGaN layer (12) formed on a surface of the substrate (11) and having an In content between 20% and 60% so as to ensure that a transition from negatively charged surface states to positively charged surface states occurs within a composition range; and an InN layer (13) formed on a surface of the InGaN layer (12) facing away from the substrate (11) to act as a stabilization layer. The InGaN layer (12) with an In content between 20% and 60% allows generation of an electrochemical response independent of the concentration of a solution to be detected; and in addition, the InN layer (13) with a high density of intrinsic, positively charged surface states further improves the electrochemical stability of the reference electrode.

    Total-reflection infrared reflection device and preparation method thereof

    公开(公告)号:US11143902B2

    公开(公告)日:2021-10-12

    申请号:US16491490

    申请日:2017-11-15

    Abstract: A total-reflection infrared reflection device and a preparation method thereof. The device includes two light-transmitting conductive substrates disposed oppositely, the two light-transmitting conductive substrates are packaged to form a seal cavity, in the seal cavity, opposite surfaces of the two light-transmitting conductive substrates are respectively coated with a first liquid crystal layer capable of reflecting left-handed polarized light and a second liquid crystal layer capable of reflecting right-handed polarized light, the first liquid crystal layer includes a polymer network and a cholesteric liquid crystal with a left-handed spiral structure, the second liquid crystal layer includes a polymer network and a cholesteric liquid crystal with a right-handed spiral structure, the cholesteric liquid crystal with the left-handed spiral structure can reflect left-handed polarized light, and the cholesteric liquid crystal with the right-handed spiral structure can reflect right-handed polarized light.

    COMPRESSED SENSING BASED OBJECT IMAGING SYSTEM AND IMAGING METHOD THEREFOR

    公开(公告)号:US20210144278A1

    公开(公告)日:2021-05-13

    申请号:US16618376

    申请日:2018-01-18

    Abstract: A compressed sensing based object imaging system and an imaging method thereof. The object imaging system comprises a light source generation unit (11), a filter unit (12), an image generation unit (13), an image acquisition unit (14), and an image reconstruction unit (15). The light source generation unit (11) generates experimental laser; the filter unit (12) filters high frequency scattered light and forms parallel light; the image generation unit (13) generates an experimental image in which an object image (16) and a specific measurement matrix (17) are superimposed; the image acquisition unit (14) performs compression sampling on the generated experimental image; and the image reconstruction unit (15) reconstructs sampling data to restore the object image (16). The imaging method comprises: establishing a sample database comprising the specific target object image (16); training sample images to obtain the specific measurement matrix (17); and simultaneously completing image sampling, image compression and image recognition in an all-optical system. The system and the method can greatly reduce the data volume recorded in image recognition and image matching, thus improving the real-time performance of the system, and providing a possibility of concurrent processing by machine vision and artificial intelligence.

    Cerium sulfate chelated sulfur dioxide, a preparation method and a use thereof

    公开(公告)号:US10899628B2

    公开(公告)日:2021-01-26

    申请号:US16094939

    申请日:2018-03-15

    Abstract: The disclosure discloses cerium sulfate chelated sulfur dioxide, a preparation method and a use thereof. The cerium sulfate chelated sulfur dioxide has a molecular formula of Ce[SO4][SO2].2H2O. It is a white crystal and the preparation method thereof may comprise the following steps: adding anhydrous cerium sulfate to dilute sulfuric acid with stirring for dissolvation; adding a solvent followed by refluxing at 45-50° C. for 2.0-2.5 h; heating the reaction product to remove the solvent, cooling to 20° C. or lower, and adding dilute sulfuric acid to allow precipitation of all crystals; cooling down the product followed by suction filtration, washing the obtained crystals by the solvent, so that crude cerium sulfate chelated sulfur dioxide can be obtained. The solubility of the cerium sulfate chelated sulfur dioxide of the disclosure has been significantly improved compared to the anhydrous cerium sulfate. The obtained solution is colorless and transparent, so that the cerium sulfate chelated sulfur dioxide can be used as a better titrant with wide application and supreme performance.

    MULTI-STABLE ELECTRORESPONSIVE SMART WINDOW AND PREPARATION METHOD THEREOF

    公开(公告)号:US20200326580A1

    公开(公告)日:2020-10-15

    申请号:US16498755

    申请日:2018-10-10

    Abstract: A multi-stable electroresponsive smart window and preparation method thereof are disclosed. The multi-stable electroresponsive smart window comprises a first light transmitting conductive substrate, a parallel orientation layer, a positive polymer stabilized cholesteric texture layer, a positive cholesteric texture layer and a second light transmitting conductive substrate disposed in stack successively. The multi-stable electroresponsive smart window of the present disclosure can realize a diversified light transmission state such as colored and transparent state, colored and blur state, colorless and blur state, and colorless and transparent state by changing the magnitude of the access voltage, thereby satisfying the various demands in people's work and life. In addition, the multi-stable electroresponsive smart window of the present disclosure has the characteristics of simple production, rich patterns, energy saving and environmental protection, which has good application prospects in the fields of window glass, home glass window and glass curtain wall, and the like.

    METHOD FOR PREPARING ELECTROWETTING DISPLAY SUPPORT PLATE

    公开(公告)号:US20200004009A1

    公开(公告)日:2020-01-02

    申请号:US16484882

    申请日:2017-11-15

    Abstract: A method for preparing an electrowetting display support plate (5), comprising the following steps: preparing a substrate (7) having an electrode layer; preparing a hydrophobic insulating layer (13) and pixel walls (20) on the substrate (7) having an electrode layer, the pixel walls (20) being made of a hydrophilic material; performing plasma etching on the substrate (7) having the pixel walls (20), the power of the plasma etching being 30-1,000 W/m2; and heating the substrate (7) subjected to the plasma etching, so as to recover the hydrophobicity of the hydrophobic insulating layer (13). According to the method, the technical bias that the display support plate (5) being treated by means of the plasma etching would influence the quality of the hydrophobic insulating layer (13) is eliminated.

Patent Agency Ranking