Abstract:
A data processor comprises a memory having storage elements arranged in columns and a number of column decoders, each having a memory access port. The data processor has a plurality of processing elements, and each of the memory ports is coupleable to at least a respective one of the processor elements, such that each processor element is capable of accessing at least one column of storage elements.
Abstract:
A vehicle anti-lock braking (ABS) system having a motor-driven pump (10) for providing a hydraulic supply to the ABS system. The pump motor (10) is controlled by a series device in the form of an electronic switch (16), such as a MOSFET, to enable frequent testing of the motor circuit by short pulses which produce no significant noise. Feedback to control motor speed is obtained by measuring the e.m.f. generated by the motor (16) after it has been switched off and after a delay to allow the back e.m.f., caused by switching off the motor, to decay (preferably to zero) before the measurement operation begins. The generated voltage is integrated during a motor switch-off period, the motor speed being established in this period by subtracting the measured integrated voltage when acting as a generator from the main supply voltage (B ). The ignition switch-controlled supply within the vehicle electrical system only operates a logic gate (40) to control the supply of direct battery power to the vehicle voltage regulator (36), the pump motor circuit and its electronic controller (16) being connected directly to the battery supply (B ) whereby to act as an energy sink to protect all silicon devices in the electrical control system except the ignition circuit logic gate means.
Abstract:
The invention relates to compounds having activity to inhibit lipoxygenase enzyme activity, to pharmaceutical compositions comprising these compounds, and to a medical method of treating. More particularly, this invention concerns certain substituted arylalkynyl- and ((heteroaryl)alkynyl)-N-hydroxy-ureas which inhibit leukotriene biosynthesis, to pharmaceutical compositions of these compounds and to a method of inhibiting leukotriene biosynthesis.
Abstract:
Compounds of the structure (I) where p and q are zero or one, but cannot both be the same, M is a pharmaceutically acceptable cation or a metabolically cleavable group, B is a valence bond or a straight or branched alkylene group, R is alkyl, cycloalkyl or -NR R , where R and R are hydrogen, alkyl, cycloalkyl or alkanoyl, and A is optionally substituted carbocyclic aryl, furyl, benzol[b]furyl, thienyl, or benzol[b]thienyl are potent inhibitors of lipoxygenase enzymes and thus inhibit the biosynthesis of leukotrienes. These compounds are useful in the treatment or amelioration of allergic and inflammatory disease states.
Abstract translation:结构(I)的化合物,其中p和q为0或1,但不能都相同,M为药学上可接受的阳离子或代谢可裂解基团,B为价键或直链或支链亚烷基,R为 烷基,环烷基或-NR 1 R 2,其中R 1和R 2是氢,烷基,环烷基或烷酰基,A是任选取代的碳环芳基,呋喃基,苯并[b]呋喃基,噻吩基 或苯并[b]噻吩基是脂氧合酶的有效抑制剂,因此抑制白细胞三烯的生物合成。 这些化合物可用于治疗或改善过敏性和炎性疾病状态。
Abstract:
To make an elongate cut (1) in a diamond (2) using a laser radiation, a cylindrical optical system (5, 6) is used which converges the radiation at a greater angle of convergence in the plane of the cut (1) than in the transverse plane. In this way, the focal spot energy density is increased and cutting at depth is made more effective.
Abstract:
An LED (Light Emitting Device) light source (100), a pulse controller or pulse control module (130) for an LED light source, and a method are provided, for controlling relative timing and phase of LED light pulse generation and operation of peripheral devices, relative to a common timing reference. A system is provided comprising a pulse controller (130) for controlling synchronization of multiple LEDs (144) and/or other devices and peripherals (164), relative to a common timing reference. The pulse controller (130) comprises a processor (131) that programmatically executes a time based sequence of digital control signals (141) from received inputs (121) indicative of a pulse generation sequence. The pulse controller provides for multiple pulse trains where improved control of relative timing of several events is required, such as for control of multiple high intensity LED light sources and synchronized control of peripheral devices such as detectors, for applications, such as, fluorescence microscopy and other spectroscopic applications.
Abstract:
Compounds of formula (I), inhibit HDAC activity: wherein A, B and D independently represent ═CH— or ═N—; W is —CH═CH—Or —CH2CH2—; R1 is a carboxylic acid group (—COOH), or an ester group which is hydrolysable by one or more intracellular carboxylesterase enzymes to a carboxylic acid group; R2 and R3 are selected from the side chains of a natural or non-natural alpha amino acid, provided that neither R2 nor R3 is hydrogen, or R2 and R3, taken together with the carbon to which they are attached, form a 3-6 membered saturated cycloalkyl or heterocyclyl ring; Y is a bond, —C(═O)—, —S(═O)2—, —C(═O)O—, —C(═O)NR′—, —C(═S)—NR′, —C(═NH)NR′ or —S(═O)2NR— wherein R′ is hydrogen or optionally substituted C1-C6 alkyl; L1 is a divalent radical of formula -(Alk1)m(Q)n(Alk2)p- wherein m, n, p, Q. Alk1 and Alk2 are as defined in the claims; X1 represents a bond; —C(═O); or —S(═O)2—; —NR4C(═O)—, —C(═O)NR4—, —NR4C(═O)NR5—, —NR4S(═O)2—, or —S(═O)2NR4— wherein R4 and R5 are independently hydrogen or optionally substituted C1-C6 alkyl; and z is 0 or 1.
Abstract:
An apparatus and method for redirecting fluid flow in a plenum provides flow performance (quality), structural, and economic advantages by using an array of flat blades that is mounted at an angle with respect to the inlet (upstream) fluid flow, such that the blades are tilted with respect to that flow and correspondingly redirect the flow in a desired direction. The apparatus, also referred to as a “GSG” or “graduated straightening grid,” has a range of applications, and offers a number of performance, structural, and economic advantages in large-scale applications. As a particular, but non-limiting example, one or more embodiments of the flow-redirecting apparatus taught herein are configured for use in Selective Catalytic Reduction (SCR) systems where catalytic reactors are used for scrubbing industrial flue gases.