-
公开(公告)号:CN107505735A
公开(公告)日:2017-12-22
申请号:CN201710751379.3
申请日:2017-08-28
Applicant: 暨南大学
IPC: G02F1/01
Abstract: 本发明涉及光通讯器件技术领域,具体是一种基于消逝场耦合光力实现的全光光功率控制系统。一种基于消逝场耦合光力实现的全光光功率控制系统,包括纳米光纤和玻璃衬底,纳米光纤输入端连接波分复用器,波分复用器的输入端同时连接两个激光器,两个激光器分别输入泵浦光和探测光,纳米光纤下方放置玻璃衬底,玻璃衬底与纳米位移装置连接,纳米位移装置用于实现玻璃衬底以纳米量级移动,纳米光纤和玻璃衬底间的初始安装间距使探测光的消逝场与玻璃衬底耦合。本发明不需依赖电学技术,能快速响应,高效率地实现光功率控制。
-
公开(公告)号:CN107389618A
公开(公告)日:2017-11-24
申请号:CN201710448585.7
申请日:2017-06-14
Applicant: 暨南大学
IPC: G01N21/552
CPC classification number: G01N21/554
Abstract: 本发明公开了一种二氧化钛增敏的表面等离子体共振传感器及其制备方法,通过旋涂法覆盖二氧化钛纳米颗粒修饰表面等离子体共振传感芯片,所述表面等离体子体共振传感芯片是通过真空蒸镀法将金膜或银膜镀在侧边抛磨光纤抛磨面或棱镜表面制作而成。所述侧边抛磨光纤是通过光纤抛磨掉部分包层和纤芯制作而成。本发明制备简单、低廉,制得的传感器兼容性高、响应灵敏、比表面积大。
-
公开(公告)号:CN106483106A
公开(公告)日:2017-03-08
申请号:CN201611166892.8
申请日:2016-12-16
Applicant: 暨南大学
Abstract: 本发明涉及光纤应用技术领域,具体公开了一种侧边抛磨光纤,所述侧边抛磨光纤的抛磨面覆盖有一层重铬酸盐明胶薄膜,且重铬酸盐明胶薄膜形成纳米多孔结构。由于纳米多孔包层结构的侧边抛磨光纤样品的纤芯模式和包层模式之间的模间干涉,样品的透射谱有两个波谷,对应波长位置分别是1183.2nm和1324.8nm。当相对湿度升高时,灵敏度为1.02nm/RH%,线性相关系数为99.31%。当相对湿度降低时,灵敏度为1.12nm/RH%,线性相关系数为98.45%。此外,本发明的传感器还具有良好的可重复性。这种重铬酸盐明胶薄膜包层结构的光纤成本低廉,制备方法简单,与光纤系统有潜在的良好的兼容性。充分的证明了纳米多孔包层结构的光纤具备良好的湿度传感特性,它在光纤传感方面具有很好的应用前景。
-
公开(公告)号:CN104465924A
公开(公告)日:2015-03-25
申请号:CN201410651279.X
申请日:2014-11-17
Applicant: 暨南大学
CPC classification number: H01L33/20 , H01L33/22 , H01L33/60 , H01L33/642
Abstract: 本发明公开了一种基于双界面球冠型图形结构的LED芯片,其结构自上而下依次为:蓝宝石层(3)、N型氮化镓层(4)、有源层(5)、P型氮化镓层(6)以及金属反射膜层(7),其特征在于:蓝宝石层(3)的两个表面均设置有球冠型图形结构。与现有技术相比,本发明不但提高了散热效率,而且可以提高LED芯片的光提取效率。
-
公开(公告)号:CN103076653B
公开(公告)日:2014-12-31
申请号:CN201310011378.7
申请日:2013-01-11
Applicant: 暨南大学
Abstract: 本发明公开了一种光子晶体光纤耦合器的制作方法,包括下述步骤:S1、将两根光子晶体光纤进行轴向姿态控制下的侧边抛磨;S2、再将两根经S1侧边抛磨的光子晶体光纤的抛磨面进行姿态调整,保证抛磨面相向平行对准;S3、最后使用石英粉作为助粘剂,用火焰加热石英粉使其熔融形成助粘的石英夹层,使两根侧边抛磨的光子晶体光纤粘合在一起制成耦合器。本发明的过程不需要拉锥,因此可避免空气孔结构塌缩,同时不用传统光学胶,因此也增强了器件的机械稳定性。此种方法结合了熔融拉锥法和研磨胶合法的优点,克服这两种方法在制作光子晶体光纤耦合器时的不适用性,可实现光学特性、机械稳定性和热稳定性良好的光子晶体光纤耦合器的制作。
-
公开(公告)号:CN103076653A
公开(公告)日:2013-05-01
申请号:CN201310011378.7
申请日:2013-01-11
Applicant: 暨南大学
Abstract: 本发明公开了一种光子晶体光纤耦合器的制作方法,包括下述步骤:S1、将两根光子晶体光纤进行轴向姿态控制下的侧边抛磨;S2、再将两根经S1侧边抛磨的光子晶体光纤的抛磨面进行姿态调整,保证抛磨面相向平行对准;S3、最后使用石英粉作为助粘剂,用火焰加热石英粉使其熔融形成助粘的石英夹层,使两根侧边抛磨的光子晶体光纤粘合在一起制成耦合器。本发明的过程不需要拉锥,因此可避免空气孔结构塌缩,同时不用传统光学胶,因此也增强了器件的机械稳定性。此种方法结合了熔融拉锥法和研磨胶合法的优点,克服这两种方法在制作光子晶体光纤耦合器时的不适用性,可实现光学特性、机械稳定性和热稳定性良好的光子晶体光纤耦合器的制作。
-
公开(公告)号:CN102147098A
公开(公告)日:2011-08-10
申请号:CN201110094923.4
申请日:2011-04-15
Applicant: 暨南大学
IPC: F21V5/04 , F21Y101/02
Abstract: 本发明涉及LED舞台照明灯的光束角调整技术,公开了一种用于LED光源的光束角调整透镜组,包括第一聚光透镜和第二聚光透镜,其特征在于:第一聚光透镜、第二聚光透镜的曲面都是二次曲面的组合。本发明使得第二聚光透镜移动最小的距离,实现最大的光束角变化,使得光束角(50%)在140°~180°的LED光源尽量多的光能量通过第一聚光透镜,并从第二聚光透镜出射,提高了出光效率和光能利用率,减少了光在灯具中的聚集,减小了灯具由于光能利用率低所造成的温度升高。
-
公开(公告)号:CN101980060A
公开(公告)日:2011-02-23
申请号:CN201010284088.6
申请日:2010-09-15
Applicant: 暨南大学
IPC: G02B6/024
Abstract: 本发明公开了一种基于侧视光强五指型分布的保偏光纤偏振轴的定轴方法,将非相干平行光侧向照射待定轴保偏光纤,使显微物镜的观测平面上形成一个可测量的光强分布,所述光强分布经显微物镜成像于摄像机上,形成“五指型”的光强分布曲线;计算光强分布曲线的自相关系数,并根据“五指型”的波峰、波谷的特征值即可对保偏光纤精确定轴。本发明不再需要建立标准曲线,从而可显著提高定轴效率。本发明主要适用于偏振轴在0°或90°附近对定轴精度有很高要求的情况,通常在制作保偏光纤耦合器和保偏光纤偏振器时有此要求,本发明可应用于制作保偏光纤耦合器、保偏光纤偏振器、保偏光纤的熔接、保偏光纤拉锥、光纤陀螺等。
-
公开(公告)号:CN101533123A
公开(公告)日:2009-09-16
申请号:CN200910038858.6
申请日:2009-04-21
Applicant: 暨南大学
IPC: G02B6/024
Abstract: 本发明公开了一种基于空间衍射光的保偏光纤定轴方法,包括如下步骤:(1)将激光束垂直照射到保偏光纤上,形成背向衍射图像;(2)用带镜头的CCD摄像机将衍射图像中光强明显较强的那部分衍射图像清晰地拍摄下来,并传送到图像处理器;(3)获得衍射图像的对称系数;(4)旋转保偏光纤,得到对应保偏光纤不同方位角的衍射图像;并获得保偏光纤方位角与对称系数的对应关系曲线;(5)选取对称系数大于0.96的相邻90度方位角的曲线的两个波峰,其中一个波峰对应快轴,另一个波峰对应慢轴,依据保偏光纤快轴与慢轴衍射图像的差异性判断出快轴和慢轴对应的波峰及方位角,从而实现定轴。本发明不需要建立标准曲线,定轴快。
-
公开(公告)号:CN101325453A
公开(公告)日:2008-12-17
申请号:CN200810029414.1
申请日:2008-07-11
Applicant: 暨南大学
CPC classification number: G01J1/4257
Abstract: 本发明公开了一种全光纤光功率监测器,包括光电探测器和一段光纤,其特征在于,所述光纤的包层上开有一个用于泄漏光的V形缺口,所述V形缺口底部距离纤芯表面的最近距离为3~5um,所述光电探测器置于V形缺口外侧,用于探测V形缺口的泄漏光。本发明可实现较高效率的光电探测器接收分光能量。本发明的全光纤光功率监测器低插入损耗、低回波损耗、高传输功率处理能力;它也可应用于保偏光纤等特种光纤传输系统中,同时还可制作体积小、成本低的全光纤器件等。本发明的全光纤光功率监测器可用在光通信的光纤激光器、光放大器、超窄光脉冲发生器等高性能光通信器件中,也可应用于光纤传感领域。
-
-
-
-
-
-
-
-
-