Abstract:
냉각 성능 향상을 위한 내부유로 구조를 포함하는 가스터빈 블레이드가 개시된다. 본 발명의 실시예에 따른 가스터빈 블레이드는, 터빈블레이드 후단부의 냉각 성능 향상을 위한 냉각요철 구조를 포함하는 터빈블레이드(100)로서, 냉매 유입구(131) 및 냉매 배출구(132)를 구비하고, 터빈 블레이드 내부에 형성된 냉매 유동로(133)를 포함하는 냉각 유로부(130); 상기 냉각 유로부(130) 내부면에 돌출 형성되고, 냉매 유동 방향과 평행하게 형성된 하나 이상의 제 1 요철부(110); 및 상기 냉각 유로부(130) 내부면에 돌출 형성되고, 상기 제 1 요철부(110)와 소정의 각도(a0)를 이루며 형성된 하나 이상의 제 2 요철부(120);를 포함하는 것을 구성의 요지로 한다.
Abstract:
본 발명은 냉각 유체가 유입되는 유입부와, 상기 유입부와 격벽에 의해 분리되고 상기 유입부의 일측과 연결되어, 상기 유입부에서 유입된 냉각유체가 유출되는 유출부 및 일측 단부가 상기 유출부의 일측 또는 상기 유입부의 내벽과 접촉하며, 냉각 유체의 유로 방향이 변경되는 상기 유입부와 상기 유출부가 연결되는 부분에 격자구조를 형성하며 각각 이격된 복수개의 격판이 경사지게 설치되는 격판부를 포함하고, 상기 유입부와 상기 유출부는 U자 형상으로 연결되며, 상기 격판부는 상기 유출부의 내측 코너에 형성된 제1정체부로 냉각유체가 유입되도록 일측으로 경사진 제1격판부 및, 상기 유출부의 외측코너에 형성된 제2정체부로 냉각유체가 유입되도록, 상기 제1격판부와 교차하며 격자구조를 형성하고, 하단이 상기 제1격판부의 상부와 접촉하도록 구비되는 제2격판부를 포함하는 냉각관에 관한 것이다. 이와 같은 본 발명의 일 실시예에 의한 냉각관에 의하면, 회전영역이 있는 냉각관에 냉각 유체가 흐를 때 회전 영역에서 유동의 박리 및 구석 와류등을 방지하여 상기 냉각관에 열전달 및 냉각 성능을 균일하도록 하는 효과를 제공한다.
Abstract:
The present invention relates to an internal flow path structure of a blade installed in the rotor of a gas turbine, wherein the internal flow path structure can improve the cooling performance of the blade. The internal flow path structure of the blade according to the present invention for an effect above comprises: multiple first flow paths arranged along the trailing surface of the blade; at least one first partition functioning as a partition between the first flow paths; multiple second flow paths partitioned by the first partition, and arranged along the leading surface of the blade; and second partitions arranged to intersect with the first partition, and functioning as partitions between the first flow paths and the second flow paths, wherein the first flow paths arranged to continuously touch the trailing surface can have flow directions facing the top of the blade from the bottom of the blade, and the second flow paths arranged to continuously touch the leading surface can have flow directions facing the bottom of the blade from the top of the blade.
Abstract:
The present invention relates to a sunlight-thermal energy conversion device capable of converting sunlight into thermal energy. More specifically, provided are a highly-efficient sunlight-thermal energy conversion device having a fine surface structure capable of significantly improving efficiency of sunlight -thermal energy conversion by maximizing absorption ratio of sunlight and accordingly maximizing boiling heat transfer efficiency to other heating media and a manufacturing method thereof. To that end, according to the present invention, the sunlight-thermal energy conversion device includes: a substrate which is made of semiconductor material; a plurality of first nano-wires which are extended upward in the vertical direction to the substrate, are arranged on the top surface of the substrate, and are made of semiconductor material; and a plurality of second nano-wires which are extended downward facing the first nano-wires, are arranged on the bottom surface of the substrate, and are made of semiconductor material. On the bottom surface of the space between the first nano-wires and the second nano-wires, metal particles are distributed in clusters.
Abstract:
PURPOSE: A gas turbine combustor is provided to prevent the combustion chamber liner from being damaged and to improve the durability by improving the cooling performance of combustion chamber liner in which a dimple is formed, thereby being used for a long time. CONSTITUTION: A gas turbine combustor includes a dimple (110) and a hole (120). The dimple is provided on the outer side surface of combustion chamber liner (100). The hole is opened inside of the dimple. The dimple comprises any one of a circular or ellipse form. The dimple is spaced by a predetermined distance along the length direction of combustion chamber liner.
Abstract:
PURPOSE: A heat transfer element and a manufacturing method thereof are provided to improve heat transfer performance by controlling film boiling by using a composite structure of a nanostructure and a microstructure and increasing a critical heat flux. CONSTITUTION: A resist layer is patterned on a substrate. The substrate is etched by a bosch process. A first structure(100) is formed by eliminating the resist layer. The first structure is formed on the substrate as a pattern. The first structure performs a role as a bubble seed. A second structure(200) is installed on the first structure. The second structure forms a super hydrophilic surface. A sidewall(300) surrounds the first structure. The size of the first structure is 1 to 10,000micrometers. The first structure is formed into a cavity or pillar shape.