소결 조제용 나노 사이즈 글라스 분말 및 그 제조 방법
    71.
    发明公开
    소결 조제용 나노 사이즈 글라스 분말 및 그 제조 방법 有权
    一种用于烧结添加剂的纳米玻璃粉及其制造方法

    公开(公告)号:KR1020120061418A

    公开(公告)日:2012-06-13

    申请号:KR1020100122733

    申请日:2010-12-03

    Abstract: PURPOSE: A nano-sized glass powder for sintering aid and a manufacturing method thereof are provided to have uniform particle distribution by using a sol-gel method. CONSTITUTION: A manufacturing method of A nano-sized glass powder for sintering aid comprises the following steps: dissolving starting raw material of boron(B), starting raw material of silicon(Si), and starting raw material of metal oxide in non-aqueous solvent in order to manufacture a mixture(s11); controlling a sol-gel reaction by adding alkali catalyst to the mixed solution(s12); and drying the sol-gel reagent and heat treating thereof(s13). The non aqueous solvent is ethanol. The heat treating is processed at less than 650 deg. Celsius. A manufacturing method of nano size glass powder for sintering aid uses the non aqueous solvent.

    Abstract translation: 目的:提供一种用于烧结助剂的纳米尺寸玻璃粉末及其制造方法,其通过使用溶胶 - 凝胶法而具有均匀的粒子分布。 构成:用于烧结助剂的纳米尺寸玻璃粉末的制造方法包括以下步骤:将起始原料的硼(B),原料硅(Si)和起始原料的金属氧化物溶解在非水溶液 溶剂以制备混合物(s11); 通过向混合溶液中加入碱催化剂来控制溶胶 - 凝胶反应(s12); 并干燥溶胶 - 凝胶试剂并进行热处理(s13)。 非水溶剂是乙醇。 在小于650度处理热处理。 摄氏度。 用于烧结助剂的纳米尺寸玻璃粉末的制造方法使用非水溶剂。

    세라믹 전자부품용 자성체 조성물, 그 제조방법 및 이를 이용한 세라믹 전자부품
    72.
    发明公开
    세라믹 전자부품용 자성체 조성물, 그 제조방법 및 이를 이용한 세라믹 전자부품 有权
    用于陶瓷电子元件的磁性材料组合物及其制造方法及使用该电子元件的电子元件

    公开(公告)号:KR1020120057098A

    公开(公告)日:2012-06-05

    申请号:KR1020100118685

    申请日:2010-11-26

    Abstract: PURPOSE: A magnetic material composition for ceramic electronic components, a manufacturing method thereof, and a ceramic electronic component using thereof are provided to enhance sinterability and magnetic property by optimizing composition range of Ni-Zn-Cu ferrite powder. CONSTITUTION: A magnetic material composition for ceramic electronic components comprises nickel-zinc-copper ferrite powder. The nickel-zinc-copper ferrite powder comprises iron oxide(Fe203) and sum total 47.0-49.5 molar portion of titanium oxide(TiO2) and cobalt oxide(CoO). 16.0-24.0 molar portion of nickel oxide(NiO), 18.0-25.0 molar portion of zinc oxide(ZnO), and 7.0-13.0 molar portion of cupric oxide(CuO) are included. A manufacturing method of the magnetic material composition for ceramic electronic component comprises the following steps: preparing raw materials of titanium oxide(TiO2), iron oxide(Fe203), nickel oxide(NiO), zinc oxide(ZnO), cupric oxide(CuO), and cobalt oxide(CoO); mixing the raw materials and liquid milling thereof; and drying the milled mixture and incinerating thereof in order to manufacture nickel-zinc-copper ferrite powder.

    Abstract translation: 目的:提供一种用于陶瓷电子元件的磁性材料组合物,其制造方法和使用其的陶瓷电子元件,通过优化Ni-Zn-Cu铁氧体粉末的组成范围来提高烧结性和磁性能。 构成:用于陶瓷电子部件的磁性材料组合物包括镍 - 锌 - 铜铁氧体粉末。 镍 - 锌 - 铜铁氧体粉末包含氧化铁(Fe 2 O 3)和总共47.0-49.5摩尔份的氧化钛(TiO 2)和氧化钴(CoO)。 氧化镍(NiO)16.0-24.0摩尔份,氧化锌(ZnO)18.0-25.0摩尔份,氧化铜(CuO)7.0-13.0摩尔份)。 陶瓷电子部件用磁性材料组合物的制造方法包括以下步骤:制备氧化钛(TiO 2),氧化铁(Fe 2 O 3),氧化镍(NiO),氧化锌(ZnO),氧化铜(CuO) ,和氧化钴(CoO); 混合原料和液体研磨; 并干燥碾磨混合物并焚烧,以制备镍 - 锌 - 铜铁氧体粉末。

    엔아이제트엔씨유계 페라이트 조성물, 및 이를 이용한 적층형 칩 부품
    73.
    发明公开
    엔아이제트엔씨유계 페라이트 조성물, 및 이를 이용한 적층형 칩 부품 有权
    NIZNCU FITEITE组合物和包含其的多层芯片材料

    公开(公告)号:KR1020120045335A

    公开(公告)日:2012-05-09

    申请号:KR1020100106814

    申请日:2010-10-29

    Abstract: PURPOSE: An NiZnCu based ferrite composition and a multilayered chip component using the same are provided to increase density, a Q value, and magnetization saturation by using ferrite compositions. CONSTITUTION: An NiZnCu based ferrite composition includes rare earth metal. The rare earth metal is selected from Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The rare earth metal is 0.01 to 2.0 weight% of the total composition. A ferrite composition is plasticized below 880 to 920 degrees centigrade.

    Abstract translation: 目的:提供使用NiZnCu的铁氧体组合物和使用其的多层芯片组件以通过使用铁素体组合物来增加密度,Q值和磁化饱和度。 构成:NiZnCu基铁素体组合物包括稀土金属。 稀土金属选自Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb和Lu。 稀土金属为总组合物的0.01〜2.0重量%。 铁素体组合物在880至920摄氏度之间增塑。

Patent Agency Ranking