Abstract:
PURPOSE: A resistive switching memory device and a manufacturing method thereof are provided to remove a forming process by inducing a resistive switching operation using the defect of an ultra thin transition metal oxide layer. CONSTITUTION: A bottom electrode is formed on a semiconductor substrate (S10). A metal oxide layer used as a resistive layer is formed on the bottom electrode (S20). A top electrode is formed on the metal oxide layer (S30). The metal oxide layer is deposited as an ultra thin film. A resistive switching operation is induced by using the defect of the ultra thin film (S40). [Reference numerals] (S10) Bottom electrode is formed on a semiconductor substrate; (S20) Metal oxide layer used as a resistive layer is formed; (S30) Top electrode is formed; (S40) Resistive switching operation is induced
Abstract:
본 발명은 비휘발성 저항 스위칭 메모리 소자 및 제조 방법에 관한 것으로, 반도체 기판 상에 터널 배리어 다이오드의 하부 전극을 형성하는 단계; 상기 터널 배리어 다이오드의 하부 전극 상에 터널 배리어 다이오드의 금속 산화막을 형성하는 단계; 상기 터널 배리어 다이오드의 금속 산화막 상에 터널 배리어 다이오드의 상부 전극을 형성하는 단계; 상기 터널 배리어 다이오드의 상부 전극 상에 저항변화소자의 금속 산화막을 형성하는 단계; 및 상기 저항변화소자의 금속 산화막 상에 저항변화소자의 상부 전극을 형성하는 단계;를 수행하는 것을 특징으로 한다.
Abstract:
PURPOSE: A nonvolatile resistive switching random access memory device and a manufacturing method thereof are provided to apply a tunnel barrier diode without the performance degradation of a metal oxide layer by controlling the oxygen contents of the metal oxide layer without a forming process. CONSTITUTION: A bottom electrode (10) of a tunnel barrier diode is formed on a semiconductor substrate. A metal oxide layer (20) of the tunnel barrier diode is formed on the bottom electrode of the tunnel barrier diode. A top electrode (30) of the tunnel barrier diode is formed on the metal oxide layer of the tunnel barrier diode. A metal oxide layer (40) of a variable resistance element is formed on the top electrode of the tunnel barrier diode. A top electrode (50) of the variable resistance element is formed on the metal oxide layer of the variable resistance element.
Abstract:
본 발명에 따라서 얕은 접합층을 포함하는 트랜지스터 제조 방법이 제공되는데, 상기 방법은 (a) 실리콘 기판을 제공하는 단계와; (b) 상기 실리콘 기판 상에 게이트 패턴을 형성하는 단계와; (c) 상기 게이트 패턴 및 실리콘 기판 표면 전체에 걸쳐 보호막을 형성하는 단계와; (d) 상기 기판 상의 보호막 중 소오스-드레인 부분의 보호막을 제거하는 단계와; (e) 상기 보호막이 제거된 소오드-드레인 부분을 식각하여 소오스-드레인 영역을 형성하는 단계와; (f) 상기 소오스-드레인 영역에 제1 실리콘-4족 원소 고용체 층을 에피택시얼하게 증착함과 아울러 소오스-드레인을 형성하는 단계와; (g) 이온 임플랜테이션 방법을 이용하여 도펀트를 주입하여 상기 제1 실리콘-4족 원소 고용체 층 내에 도펀트층을 형성하는 단계와; (h) 산화 공정을 이용하여 상기 제1 실리콘-4족 원소 고용체 층 표면에 산화막을 형성하여, 상기 제1 실리콘-4족 원소 고용체 층의 4족 원소가 상기 산화막 쪽으로부터 아래로 밀려나도록 함으로써, 상기 제1 실리콘-4족 원소 고용체 층의 4족 원소 농도보다 높은 농도의 4족 원소를 갖는 제2 실리콘-4족 원소 고용체 층을 상기 산화막과 상기 도펀트층 사이에 형성함과 아울러 상기 도펀트층에서 밀려나온 도펀트가 응축된 얕은 접합층을 형성하는 단계와; (i) 상기 산화막을 제거하고, 상기 기판 상의 보호막을 건식 식각함과 동시에 상기 게이트 패턴 상부의 보호막을 식각하면서 게이트 패턴 양 옆으로 스페이서를 형성함과 아울러, 상기 기판의 표면위로 상기 제2 실리콘-4족 원소 고용체 층이 돌출되도록 하는 단계를 포함하는 것을 특징으로 한 다.
Abstract:
PURPOSE: A method for manufacturing a nonvolatile resistance switching memory is provided to overcome the limit of via filling of a bottom-up method by forming a metal oxide layer with a resistance switching property in a contact hole with an electrochemical method. CONSTITUTION: A bottom electrode is deposited on a substrate. A first insulation layer for electrode separation is deposited on the bottom electrode. The bottom electrode is exposed by patterning a plurality of contact holes on the first insulation layer. A metal oxide layer is laminated in the contact hole. A top electrode is formed on the metal oxide layer.
Abstract:
PURPOSE: A method of manufacturing transistor having a shallow junction is provided to improve mobility by forming a shallow junction in the source and drain region of a silicon -4 group element solid solution. CONSTITUTION: In a method of manufacturing transistor having a shallow junction, a source-drain domain is formed on a silicon substrate. The first silicon -4 group element solid solution is formed in the source-drain domain. A dopant layer is formed in the first silicon -4 group element solid solution by implanting dopant An oxide film(70) is formed on the surface of the first silicon -4 group element solid solution region by using an oxidation process. The high concentration silicon -4 group element solid solution layer(80) is formed in the lower part of the oxide film. The shallow junction layer(90) is formed by concentration of dopants which is come out the lower part of a second high concentration silicon-4 group element.
Abstract:
PURPOSE: A transistor manufacturing method capable of increasing the mobility of holes is provided to easily form a second silicon-4 group element solid solution layer on a source-drain area using an oxidation process, thereby enabling the manufacture of a transistor with high performance without a complicated deposition process. CONSTITUTION: A protective film is formed on a silicon substrate. A protective film on a source-drain part is removed from the protective film on the substrate. The source-drain part without the protective film is etched to form a source-drain area. The first silicon-4 group element solid solution layer is deposited on a source-drain area. An oxide film(60) is formed on the first silicon-4 group element solid solution layer by an oxidation process. The second silicon-4 group element solid solution layer(70) is formed between the oxide film and the first silicon-4 group element solid solution layer.
Abstract:
A method for silicifying a surface of a silicon based nano wire selectively and a semiconductor device made by the same are provided to implement a high speed semiconductor device with a high integration and a low resistor by reducing a contact resistor when bonding a nano wire and a metal wire. One or more silicon nano wires(50) are arranged on a substrate(10). A mask pattern(90) is formed on an upper part of a silicon based nano wire. The mask pattern is made of the silicon oxide or the silicon nitride. A metal thin film(60) is stacked on the upper part of the mask pattern by a sputtering method or an atomic layer deposition method. A metal-silicide layer(70) is formed by a thermal process of a metallic thin film. The mask pattern is removed. The non-reactive metal surface is removed by using a wet etch process.