Abstract:
An alignment sensor including an illumination source, such as a white light source, having an illumination grating operable to diffract higher order radiation at an angle dependent on wavelength; and illumination optics to deliver the diffracted radiation onto an alignment grating from at least two opposite directions. For every component wavelength incident on the alignment grating, and for each direction, the zeroth diffraction order of radiation incident from one of the two opposite directions overlaps a higher diffraction order of radiation incident from the other direction. This optically amplifies the higher diffraction orders with the overlapping zeroth orders.
Abstract:
A lithographic apparatus includes a sensor, such as an alignment sensor including a self-referencing interferometer, configured to determine the position of an alignment target including a periodic structure. An illumination optical system focuses radiation of different colors and polarizations into a spot which scans the structure. Multiple position-dependent signals are detected and processed to obtain multiple candidate position measurements. Asymmetry of the structure is calculated by comparing the multiple position-dependent signals. The asymmetry measurement is used to improve accuracy of the position read by the sensor. Additional information on asymmetry may be obtained by an asymmetry sensor receiving a share of positive and negative orders of radiation diffracted by the periodic structure to produce a measurement of asymmetry in the periodic structure.