Abstract:
The present invention relates to systems and methods for detecting analyte molecules or particles in a fluid sample and in some cases, determining a measure of the concentration of the molecules or particles in the fluid sample. Methods of the present invention may comprise immobilizing a plurality of analyte molecules or particles to form a plurality of complexes, releasing at least a portion of some of the plurality of complexes, determining at least a portion of the plurality of complexes released, and determining a measure of the concentration of the analyte molecules or particles in a fluid sample.
Abstract:
The present invention relates to systems and methods for detecting analyte molecules or particles in a fluid sample and in some cases, determining a measure of the concentration of the molecules or particles in the fluid sample. Methods of the present invention may comprise immobilizing a plurality of analyte molecules or particles to form a plurality of complexes, releasing at least a portion of some of the plurality of complexes, determining at least a portion of the plurality of complexes released, and determining a measure of the concentration of the analyte molecules or particles in a fluid sample.
Abstract:
The invention relates to microscopic structures and methods of making and using the structures. A method of forming a microscopic structure of a material includes obtaining a solution (310) containing the material, establishing a flowing stream of the solution (310) in a capillary (104), wherein the capillary (104) has an inner dimension that is smaller than about 300 micrometers, and maintaining the stream until a layer is built up along an inner wall of the capillary (104) from material deposited from the flowing stream, thereby forming a microscopic structure.
Abstract:
Methods are described for detecting reaction components with affect a reaction. Biomolecules such as enzymes can be addressed at the single molecule level in order to discover function, detect binding partners or inhibitors, and/or measure rate constants.
Abstract:
The present invention relates to systems and methods for detecting analyte molecules or particles in a fluid sample and in some cases, determining a measure of the concentration of the molecules or particles in the fluid sample. Methods of the present invention may comprise immobilizing a plurality of analyte molecules or particles with respect to a plurality of capture objects. At least a portion of the plurality of capture objects may be spatially separated into a plurality of locations. A measure of the concentration of analyte molecules in a fluid sample may be determined, at least in part, on the number of reaction vessels comprising an analyte molecule immobilized with respect to a capture object. In some cases, the assay may additionally comprise steps including binding ligands, precursor labeling agents, and/or enzymatic components.
Abstract:
The present invention relates to systems and methods for detecting analyte molecules or particles in a fluid sample and in some cases, determining a measure of the concentration of the molecules or particles in the fluid sample. Methods of the present invention may comprise immobilizing a plurality of analyte molecules or particles with respect to a plurality of capture objects. At least a portion of the plurality of capture objects may be spatially separated into a plurality of locations. A measure of the concentration of analyte molecules in a fluid sample may be determined, at least in part, on the number of reaction vessels comprising an analyte molecule immobilized with respect to a capture object. In some cases, the assay may additionally comprise steps including binding ligands, precursor labeling agents, and/or enzymatic components.
Abstract:
Described herein are systems and methods for the detection of and/or determination of a measure of the concentration of analyte molecules or particles in a fluid sample. In some cases, the systems and methods employ techniques to reduce or limit the negative effects associated with non-specific binding events. Certain methods of the present invention involve associating the analyte molecules at least a first type of binding ligand and at least a second type of binding ligand, and spatially segregating the analyte molecules into a plurality of locations on a surface. The presence of an analyte molecule at or in a location may be determined by determining the presence of both the first type of binding ligand and the second type of binding ligand.
Abstract:
The present invention generally relates, in certain aspects, to relatively small devices applied to the skin, modular systems, and methods of use thereof. In some aspects, the device is constructed and arranged to have more than one module. For instance, the device may have a module for delivering to and/or withdrawing fluid from the skin and/or beneath the skin of a subject and a module for transmitting a signal indicative of the fluid delivered to and/or withdrawn from the skin and/or beneath the skin of the subject, a module for analyzing a fluid withdrawn from the skin and/or beneath the skin of the subject, or the like. In some embodiments, the modules are connectable and/or detachable from each other, and in some cases, the connections and/or detachments may be performed while the device is in contact with the subject, e.g., while affixed to the subject. In some embodiments, the device may be repeatedly applicable to the skin of the subject to deliver to and/or withdraw fluid from the skin and/or beneath the skin of a subject, e.g., at the same location, or at different locations on the skin of the subject. In some aspects, the devices may be self-contained and/or have a relatively small size, and in some cases, the device may be sized such that it is wearable and/or able to be carried by a subject. For example, the device may have a mass and/or dimensions that allow the device to be carried or worn by a subject for various periods of time, e.g., at least about an hour, at least about a day, at least about a week, etc., or no more than about an hour, no more than about 10 min, etc.