Abstract:
Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
Abstract:
Signal processing devices and methods estimate transforms between signals using a least squares technique. From a seed set of transform candidates, a direct least squares method applies a seed transform candidate to a reference signal and then measures correlation between the transformed reference signal and a suspect signal. For each candidate, update coordinates of reference signal features are identified in the suspect signal and provided as input to a least squares method to compute an update to the transform candidate. The method iterates so long as the update of the transform provides a better correlation. At the end of the process, the method identifies a transform or set of top transforms based on a further analysis of correlation, as well as other results.
Abstract:
Digital data is optically broadcast through an environment by controllably switching the brightness or chrominance of LED solid state lamps, or of other illumination sources (e.g., television screens and backlit computer displays). This optical data channel is useful to convey cryptographic key data by which devices within the environment can authenticate themselves to a secure network. In some embodiments, the optical modulation is sensed by the camera of a smartphone. The row data output by the smartphone's camera sensor is processed to extract the modulated data signal. In some monochrome embodiments, data communication speeds far in excess of the camera's frame rate (e.g., 30/second), or even the camera's row rate (e.g., 14,400/second) are achieved. Still greater rates can be achieved by conveying different data in different chrominance channels. A great number of other features and arrangements are also detailed.
Abstract:
A phase estimation method estimates the phase of signal components using a point spread function. The method obtains a point spread function that expresses complex frequencies at a non integer location in terms of integral frequencies, for a complex frequency of a signal at a non integer location in a complex frequency domain. It obtains complex frequencies of the signal for the integral frequencies, and computes a sum of products of the complex frequencies of the signal at the integral frequencies with the corresponding complex values of the point spread function to provide an estimate of phase of the signal at the non integer location.
Abstract:
Content played at an event is identified using watermarking and/or other content recognition combined with contextual metadata, which facilitates identification and correlation with other content and metadata when it is posted to a network.
Abstract:
Cell phones and other portable devices are equipped with a variety of technologies by which existing functionality is improved, and new functionality is provided. Some aspects relate to imaging architectures, in which a cell phone's image sensor is one in a chain of stages that successively act on instructions/data, to capture and later process imagery. Other aspects relate to distribution of processing tasks between the device and remote resources (“the cloud”). Elemental image processing, such as filtering and edge detection—and even some simpler template matching operations—may be performed on the cell phone. Other operations are referred out to remote service providers. The remote service providers can be identified using techniques such as a reverse auction, through which they compete for processing tasks. Other aspects of the disclosed technologies relate to visual search capabilities, and determining appropriate actions responsive to different image inputs. Still others concern metadata generation, processing, and representation. A great number of other features and arrangements are also detailed.
Abstract:
A smartphone is adapted for use as an imaging spectrometer, by synchronized pulsing of different LED light sources as different image frames are captured by the phone's CMOS image sensor. A particular implementation employs the CIE color matching functions, and/or their orthogonally transformed functions, to enable direct chromaticity capture. A great variety of other features and arrangements are also detailed.
Abstract:
Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
Abstract:
The parameters of an optical code are optimized to achieve improved signal robustness, reliability, capacity and/or visual quality. An optimization program can determine spatial density, dot distance, dot size and signal component priority to optimize robustness. An optical code generator employs these parameters to produce an optical code at the desired spatial density and robustness. The optical code is merged into a host image, such as imagery, text and graphics of a package or label, or it may be printed by itself, e.g., on an otherwise blank label or carton. A great number of other features and arrangements are also detailed.
Abstract:
A plastic item, such as a beverage bottle, conveys two distinct digital watermarks, encoded using two distinct signaling protocols. A first, printed label watermark conveys a retailing payload, including a Global Trade Item Number (GTIN) used by a point-of-sale scanner in a retail store to identify and price the item when presented for checkout. A second, plastic texture watermark conveys a recycling payload, including data identifying the composition of the plastic. The use of two different signaling protocols assures that a point-of-sale scanner will not spend its limited time and computational resources working to decode the recycling watermark, which lacks the data needed for retail checkout. In some embodiments, a recycling apparatus makes advantageous use of both types of watermarks to identify the plastic composition of the item (e.g., relating GTIN to plastic type using an associated database), thereby increasing the fraction of items that are correctly identified for sorting and recycling. A great number of other features and arrangements are also detailed.