Abstract:
A processor including logic to execute an instruction to synchronize a mapping from a physical address of a guest of a virtualization based system (guest physical address) to a physical address of the host of the virtualization based system (host physical address), and stored in a translation lookaside buffer (TLB), with a corresponding mapping stored in an extended paging table (EPT) of the virtualization based system.
Abstract:
A processor includes a memory management unit and a front end including a decoder. The decoder includes logic to receive a flush-on-commit (FoC) instruction to flush dirty data from a volatile cache to a persistent memory upon commitment of a store associated with the FoC instruction. The memory management unit includes logic to, based upon a flush-on-fail (FoF) mode, skip execution of the flush-on-commit instruction and to flush the dirty data from the volatile cache upon a subsequent FoF operation.
Abstract:
A processor includes a processing core to generate a memory request for an application data in an application. The processor also includes a virtual page group memory management (VPGMM) unit coupled to the processing core to specify a caching priority (CP) to the application data for the application. The caching priority identifies importance of the application data in a cache.
Abstract:
Computer-readable storage media, computing apparatuses and methods associated with persistent memory are discussed herein. In embodiments, a computing apparatus may include one or more processors, along with a plurality of persistent storage modules that may be coupled with the one or more processors. The computing apparatus may further include system software, to be operated by the one or more processors, to receive volatile memory allocation requests and persistent storage allocation requests from one or more applications that may be executed by the one or more processors. The system software may then dynamically allocate memory pages of the persistent storage modules as: volatile type memory pages, in response to the volatile memory allocation requests, and persistent type memory pages, in response to the persistent storage allocation requests. Other embodiments may be described and/or claimed.
Abstract:
A processor including logic to execute an instruction to synchronize a mapping from a physical address of a guest of a virtualization based system (guest physical address) to a physical address of the host of the virtualization based system (host physical address), and stored in a translation lookaside buffer (TLB), with a corresponding mapping stored in an extended paging table (EPT) of the virtualization based system.
Abstract:
A processor including logic to execute an instruction to synchronize a mapping from a physical address of a guest of a virtualization based system (guest physical address) to a physical address of the host of the virtualization based system (host physical address), and stored in a translation lookaside buffer (TLB), with a corresponding mapping stored in an extended paging table (EPT) of the virtualization based system.
Abstract:
Embodiments of apparatuses, methods, and systems for highly scalable accelerators are described. In an embodiment, an apparatus includes an interface to receive a plurality of work requests from a plurality of clients and a plurality of engines to perform the plurality of work requests. The work requests are to be dispatched to the plurality of engines from a plurality of work queues. The work queues are to store a work descriptor per work request. Each work descriptor is to include all information needed to perform a corresponding work request.
Abstract:
Embodiments may be generally direct to apparatuses, systems, method, and techniques to detect a message to communicate via an interconnect coupled with a device capable of communication via a plurality of interconnect protocols, the plurality of interconnect protocols comprising a non-coherent interconnect protocol, a coherent interconnect protocol, and a memory interconnect protocol. Embodiments also include determining an interconnect protocol of the plurality of interconnect protocols to communicate the message via the interconnect based on the message, and providing the message to a multi-protocol multiplexer coupled with the interconnect, the multi-protocol multiplexer to communicate the message utilizing the interconnect protocol via the interconnect with the device.
Abstract:
Implementations of the disclosure provide processing device comprising: an interrupt managing circuit to receive an interrupt message directed to an application container from an assignable interface (AI) of an input/output (I/O) device. The interrupt message comprises an address space identifier (ASID), an interrupt handle and a flag to distinguish the interrupt message from a direct memory access (DMA) message. Responsive to receiving the interrupt message, a data structure associated with the interrupt managing circuit is identified. An interrupt entry from the data structure is selected based on the interrupt handle. It is determined that the ASID associated with the interrupt message matches an ASID in the interrupt entry. Thereupon, an interrupt in the interrupt entry is forwarded to the application container.
Abstract:
Aspects of the embodiments are directed to systems and methods for providing and using hints in data packets to perform memory transaction optimization processes prior to receiving one or more data packets that rely on memory transactions. The systems and methods can include receiving, from a device connected to the root complex across a PCIe-compliant link, a data packet; identifying from the received device a memory transaction hint bit; determining a memory transaction from the memory transaction hint bit; and performing an optimization process based, at least in part, on the determined memory transaction.