Abstract:
A terminal capable of reducing the resource regions in an uplink component band without increasing signaling even if a plurality of acknowledgment signals to downlink data transmitted respectively in a plurality of downlink component bands are transmitted from one uplink component band. A terminal (200) for making communication using the plurality of downlink component bands, wherein a PCFICH reception section (208) obtains CFI information indicating the number of symbols used for a control channel to which resource allocation information relating to downlink data addressed to a device is allocated for each of the downlink component bands, a mapping section (214); sets a resource region to which an acknowledgment signal to the downlink data is allocated for each of the plurality of downlink component bands according to the CFI information of each of the downlink component bands in an uplink component band set to the device, and maps the acknowledgment signals into the resource regions corresponding to the downlink component bands used for the allocation of the downlink data.
Abstract:
A terminal and a communication method thereof whereby, even in a case of employing the asymmetric carrier aggregation system and further employing the MIMO transmission method for upstream channels, the error characteristic of control information can be prevented from being degraded. In the terminal (200), a transport signal forming unit (212) forms transport signals by arranging, based on a arrangement rule, ACK/NACK and CQI in a plurality of layers. According to the arrangement rule, an error detection result is arranged, on a priority basis, in a layer that is different from a layer in which the channel quality information is arranged. In this way, the puncturing of CQI using ACK/NACK can be minimized, with the result that the error characteristic of control information can be prevented from being degraded.
Abstract:
A plurality of the same signals to be repetitively transmitted over multiple subframes are multiplied, in each subframe, by one of components of one sequence of a plurality of orthogonal sequences orthogonal to each other thereby generating a transmission signal. The generated transmission signal is transmitted.
Abstract:
A wireless communication terminal apparatus wherein even in a case of performing a wideband transmission using only a downstream line, CCE assignment can be flexibly performed without any collisions of ACK and NACK signals among a plurality of unit bands. In a wireless communication terminal apparatus (200) using a plurality of downstream unit bands to perform communications, a PDCCH receiving unit (207) blind-decodes CCE in a search space of the plurality of downstream unit bands, thereby acquiring resource assignment information of downstream line data addressed to the wireless communication terminal apparatus (200), and a modulating unit (209) modulates a response signal, which is responsive to the downstream line data in particular downstream unit bands, based on a modulation scheme in which the number of modulation multi-values corresponds to the number of those particular ones of the plurality of downstream unit bands in which the resource assignment information addressed to the wireless communication terminal apparatus (200) is assigned to CCE of the same CCE number.
Abstract:
If repetition transmission is applied to a response signal for a downlink data signal and an uplink signal, the uplink signal is repeatedly transmitted using a certain number of consecutive subframes starting with a first subframe, at which the repetition transmission of the uplink signal starts, and the response signal is repeatedly transmitted using at least the certain number of consecutive subframes starting with a second subframe, at which the repetition transmission of the response signal starts. The first subframe is set to be the same as the second subframe.
Abstract:
A transmission method in time-division relay, using a common transmission format to transmit a control signal for each relay station apparatus; and a base station apparatus of the same. A base station apparatus maps the control signal for relay station apparatuses in the (D+1)th OFDM symbol inside a subframe, wherein D is the maximum number of OFDM symbols in which control signals for mobile station apparatuses are mapped, said control signals being transmitted from the base station apparatus to mobile station apparatuses under the control of the base station apparatus.
Abstract:
Provided is a radio communication terminal which is capable of measuring quality in communication with a handover destination with high accuracy. The radio communication terminal is capable of communicating with a base station or a relay node, and includes: a receiver which receives control information including information relating to measurement of measuring quality of a neighbor cell; an extractor which extracts information on a subframe where the measurement should be performed, which is a subframe where only transmission of a signal from the relay node connected to the base station is performed, from the information relating to the measurement; a measurement section which performs the measurement, on a subframe basis, based on the extracted information on the subframe where the measurement should be performed; and a transmitter which transmits a result of the measurement to the base station or the relay node.
Abstract:
A wireless communication base station apparatus which is able to prevent deterioration in the throughput of LTE terminals even when LTE terminals and LTE+ terminals coexist. In this apparatus, based on the mapping pattern of the reference signals used only in LTE+ terminals, a setting unit (105) sets, in each subframe, the resource block groups where the reference signals used only by the LTE+ terminals are mapped. For symbols mapped to the antennas (110-1 to 110-4), an mapping unit (106) maps, to all the resource blocks within one frame, cell specific reference signals used for both LTE terminals and LTE+ terminals. For the symbols mapped to the antennas (110-5 to 110-8), the mapping unit (106)maps, to the plurality of resource blocks, of which part of the resource block groups is comprised, in the same subframe within one frame, the cell specific reference signals used only for LTE+ terminals, based on the setting results inputted from the setting unit (105).