Abstract:
Apparatus and methods are described for establishing a connection to a subscriber access network, such as a 3G network, over and untrusted network, such as a wireless LAN. A stream ID is assigned to a mobile device upon initialization of the device, and the stream ID remains active until the device powers down, loses WLAN coverage, or de-registers with the network. Both voice and data calls may be routed over the tunnel using the assigned stream ID.
Abstract:
Devices and methods are provided for facilitating selection and acquisition of an access point (AP) base station via implementation of a system selection file that may include a preferred roaming list (PRL), a public land mobile network (PLMN) database, or the like. The selection attempts may be limited to specific preferred systems, such as, for example, the AP base station. The system selection file includes identification parameters of the preferred systems. In one embodiment, the identification parameters include at least one of a system identifier (SID) and a network identifier (NID) for a given one of the systems.
Abstract:
An apparatus and method for increasing efficiency of data packet transmission comprising receiving a TCA message and a new pilot signal (410); determining if the TCA message includes at least one scheduler tag (420); performing one of the following: determining if there are other pilot signals associated with the at least one scheduler tag (430) or determining if the new pilot signal is in a softer handoff with a member of an active set (435); and performing one of the following: associating the new pilot signal to the at least one scheduler tag (460) or creating a new scheduler group and associating the new pilot signal with it (470). In one aspect, one of the following additional steps is performed: determining if all the other pilot signals are newly added to the at least one scheduler tag (440) or determining if at least one of the other pilot signals is associated with the active set (450).
Abstract:
Techniques for performing system selection based on requirements and preferences of applications are described. A terminal maintains a policy table containing applications supported by the terminal, priorities of the applications, radio technologies that can be used for each application, and priorities of the radio technologies for each application. The terminal manages policies associated with the supported applications and radio technologies, determines the most suitable radio technology for each application, and activates and deactivates radio technologies in response to events, e.g., the terminal being turned on, a call being placed, the terminal leaving the coverage of a radio technology, etc.
Abstract:
A wireless device is configured to automatically resign from an ad hoc network. In some aspects the resignation may be based on automatic detection of inactivity associated with the ad hoc network. For example, resignation from the ad hoc network may be based on absence of uplink and downlink traffic at a wireless device, absence of open sockets at a wireless device, or a lack of beacon transmissions by other wireless devices. In the latter case, a lack of beacon transmissions by other wireless devices in the ad hoc network may be indicated by the transmission of a relatively large number of beacons in succession by a wireless device.
Abstract:
Techniques to configure quality of service (QoS) for communication are described. An access terminal configures a first QoS profile prior to a call. This QoS profile is for a set of QoS parameters that provides certain QoS. The access terminal thereafter establishes (e.g., originates or terminates) a call with an access network. If the first QoS profile is appropriate for the call, then QoS is not reconfigured. However, the access terminal may determine that a second QoS profile is to be used for the call, e.g., based on a format or a rate set supported by a remote/other terminal for the call. The access terminal would then configure the second QoS profile during the call. The access terminal may exchange data in accordance with (a) the first QoS profile before the second QoS profile is configured and activated and (b) the second QoS profile after it is configured and activated.
Abstract:
In a method for managing quality of service (QoS) resources during handoff across communication systems having different grades of QoS awareness, an access terminal (AT) determines that handoff has occurred from a QoS unaware system to a QoS aware system. The AT also determines whether there are any allocated, unrequested QoS resources. If one or more allocated, unrequested QoS resources are identified, the AT requests that the QoS aware system release the one or more allocated, unrequested QoS resources. The AT also determines whether there are any requested, unallocated QoS resources. If one or more requested, unallocated QoS resources are identified, the AT requests that the QoS aware system allocate the one or more requested, unallocated QoS resources to the application.
Abstract:
A UE apparatus determines UE capability and signals UE capability information to a base station. The UE may signal RF capability information to the base station with reference to at least one band combination and signal other baseband parameter(s) (obp(s)) to the base station. The RF capability information indicate RF capability with reference to at least one other band combination parameter. The obp may be indicated on a per UE basis, a per band basis, a per band combination basis, a per band, per band combination basis; and/or a per CC, per band, per band combination basis. Each band combination may indicate a combination of a numerology, a layer and a bandwidth. In another example, a plurality of basebands may be defined, each baseband indicating a combination of a numerology, a layer and a bandwidth.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may determine a mode in which the user equipment is enabled, wherein the mode is one of a non-standalone mode, a standalone mode, or a standalone mode and a non-standalone mode; determine whether to prioritize a first set of frequencies associated with a first radio access technology (RAT) or a second set of frequencies associated with a second RAT based at least in part on the mode in which the user equipment is enabled, wherein the first RAT is different from the second RAT; and perform a search of the first set of frequencies or the second set of frequencies based at least in part on whether the first set of frequencies or the second set of frequencies is prioritized. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may determine that a base station, associated with a first radio access technology, is shared between one or more operator networks of a second radio access technology; and display an icon corresponding to the second radio access technology based at least in part on a particular operator network, of the one or more operator networks, being a registered operator network of the user equipment and being associated with the second radio access technology. Numerous other aspects are provided.