Abstract:
The present invention relates to control of a wind turbine where nacelle vibration is reduced by use of blade pitching or generator torque modulation. The nacelle vibrations are reduced based on a position signal of the nacelle. An actuator signal is determined based on the position signal and applied to the actuator capable of reducing nacelle vibration. The actuator signal is gain adjusted based on a separation between the rotor frequency and tower vibration frequency.
Abstract:
A method and associated control arrangement are disclosed for controlling a power output of a wind power plant (WPP) according to a predetermined power ramp rate limit, the WPP comprising a plurality of wind turbine generators (WTGs). The method comprises receiving a first signal indicating that a first WTG is in a ready state to begin producing power. The method further comprises, upon determining that, responsive to the received first signal, beginning power production of the first WTG at a predetermined default power ramp rate would cause the power output of the WPP to exceed the power ramp rate limit, controlling power production of the first WTG using at least one of: a first delay, a power ramp rate reference less than the default power ramp rate, and a power reference less than a nominal power output of the first WTG.
Abstract:
The invention relates to a method for limiting structural loads in a wind turbine in situations where the power produced by the wind turbine is increased or decreased. The limitation of structural loads is achieved by restricting the power ramp rate, i.e. the rate of change of increases or decreases in produced power. The restriction is only invoked if a maximum change of the produced power or the corresponding internal power reference within a time window exceeds a given threshold.
Abstract:
The invention relates to a method for wind turbine generators for reducing electrical disturbances in the form of power variations which are caused by damping controllers arranged the compensate structural oscillations by inducing shaft torque variations. The shaft torque variations are generated by imposing corresponding variations in a generator set-point, e.g. a power or torque set-point. Variations in the generator set-point cause undesired variations in the power injected to the grid by one or more wind turbine generators. According to an embodiment of the invention the electrical disturbances may be reduced by limiting a damping controller's control action. The amount of limitation or restriction of the damping controller may be determined on basis on electrical disturbance information determined from power measured e.g. at a location on the grid.
Abstract:
Embodiments of the invention generally relate to wind turbine generators, and more specifically to the deactivation of wind turbines in a wind turbine park. A wind park controller may be configured to retrieve data indicating fatigue experienced by each wind turbine of the wind turbine park, and deactivate those turbines determined to be the most fatigued, thereby increasing the lifetime of turbines in the wind turbine park.