Abstract:
An apparatus which can automatically make a screen analysis of a granular material, thus eliminating the manual collection and weighing of the screened material. The heart of the apparatus is a polygonal drum having graded screens (14, 16, 18, 20, 22) on each of the faces except one (24). This open face (24) serves as a door for introducing a sample into the interior of the drum and for discharging any material larger than the largest screen (22). A gear motor (56) and crank (58) arrangement serves to longitudinally shake the drum and agitate the sample. A second gear motor (44) indexes the drum from screen to screen after a predetermined shaking time. Each screen fraction is accumulated on an electronic scale (76) with weights being determined by differential weighing. The gear motors are timed by a control box (66) which contains a microprocessor which also receives screen fraction weight inputs and calculates a screen analysis.
Abstract:
A wood pulp slurry (17, 73, 123, 209) is treated with oxygen (89, 429, 212) in a mill with little change to the process or structure of the mill. No special pressure tanks are required. The consistency of the pulp need not be altered for the treatment step. It may be treated at the usual process consistency of the pulp; e.g.; it may be treated at the usual consistency of the pulp leaving a washer or subsequent steam mixer (86, 426, 206) without additional dewatering or additional dilution. The oxygen is added into a closed section of the system so that it cannot immediately vent to the atmosphere. Alkali (85, 425, 207) should also be present when the oxygen is mixed with the slurry. The mixing (88, 428, 211) should occur near to the point of oxygen addition. The pulp is treated with oxygen several times during a sequence. Some sequences are O-X-O and O-O-X-O in which X may be a hypochlorite, a peroxide or ozone, or chlorine, chlorine dioxide, combinations of chlorine (438) and chlorine dioxide (471), hypochlorite, peroxide or ozone. The sequence may be followed by a D stage (232). Specific mixer designs are also disclosed.
Abstract:
An air-laid unitary absorbent layer composed of crosslinked cellulosic fibers and a binder is disclosed. In a preferred embodiment, the binder is a bicomponent binding fiber. In combination with one or more other layers in an absorbent article, the unitary absorbent layer can rapidly acquire, distribute, temporarily store, and then release the acquired liquid to other liquid retention layers. A method for forming the unitary absorbent layer is also disclosed.
Abstract:
A unitary stratified composite composed of a first stratum and a second stratum integrally connected by a transition zone is disclosed. The first stratum serves as a liquid acquisition stratum that rapidly acquires and then transfers liquid to the second stratum. The second stratum serves to withdraw liquid from the first stratum and further serves as a temporary storage stratum. Methods for forming the unitary stratified composite are also disclosed.
Abstract:
The invention comprises engineered structural wood products particularly useful in critical applications such as joists, headers, and beams where longer lengths, greater widths, and higher and predictable stress ratings may be required. The invention is also directed to a method for making the wood products. Most logs by nature are radially anisotropic, having wood of higher density and stiffness in their outer portion adjacent the bark than is found in the inner portion. The logs are machined to segregate the denser, stiffer outer wood. A first generally rectangular component (4) is formed from the less dense inner wood. Second generally rectangular components (6) are formed from the stiffer outer wood. Second components are adhesively bonded to at least one edge of the first components, more usually to opposite edges. The stiffer wood is thus specifically placed where it will contribute most effectively to the properties of the product. The product is analogous to an I-beam in which the lower density first component serves as the web and the higher density second component as the flange portion. The products can be handled in use in identical fashion to solid sawn lumber. They are characterized by much less variation in their stiffness than solid sawn visually or machine graded products and can be made in a wide range of width, thickness, and length.
Abstract:
The invention is a method for reproducing coniferous trees by somatic embryogenesis using plant tissue culture techniques in a multistage culturing process. A suitable explant, typically the fertilized embryo excised from an immature seed, is first cultured on a medium that induces multiple early stage proembryos. These are multiplied in a second culture having reduced growth hormones. Maltose is supplied as the carbon and energy source in the second culture. The early stage embryos grow in size and vigor to advanced early stage embryos. The embryos are then transferred to a cotyledonary embryo development culture. After several weeks somatic embryos having the appearance of zygotic embryos will have formed. These may be germinated before or after storage and transplanted to soil for further growth. Maltose used in the maintenance and multiplication culture results in larger and more robust advanced early stage embryos which, in turn, produce cotyledonary embryos very similar in morphology to natural zygotic embryos. The use of maltose at earlier stages of embryo development is more important that its use for embryo maturation.
Abstract:
A three-part dry blended soluble mixture which includes a water soluble hydroxyl group bearing polymer, a covalent crosslinking agent, and a catalyst is made into an aqueous solution which is then applied to any underlying material of choice. After drying, the crosslinked polymer forms a material that is completely insoluble in water, thereby serving as a binder or tackifier. One additive that may be included with the dry blend is wood fiber in an approximate weight ratio of nine to one and thereafter this dry blend is combined with water where the three-part dry blend goes into solution while the fibers remain in suspension. This composition is then spray applied to any underlying material and upon drying, there is formed a bonded fiber matrix which is relatively strong and which has many applications such as for use as an erosion control/seeding material, a covering for landfills, or a covering for other particulate materials stored in an outside location. The insoluble polymer with or without the fiber will biodegrade over time in an outdoor environment.
Abstract:
A binder is applied to fibers (600) to bind particles (602) to the fibers. The fibers have hydrogen bonding functional groups. The particles have functional groups capable of forming a hydrogen bond or a coordinate covalent bond. The binder comprises binder molecules, wherein the binder molecules have at least one functional group that forms a hydrogen bond or a coordinate covalent bond with the particles, and at least one functional group that forms a hydrogen bond with the fibers. A substantial portion of the particles that may be adhered to the fibers are adhered in particulate form by hydrogen bonds or coordinate covalent bonds to the binder, and the binder in turn may be adhered to the fibers by hydrogen bonds. Fibers containing particles bound by this method are easily densified.
Abstract:
A method of producing a surfaced composite panel (30) of cellulosic particulates, such as wood flakes, involves the application of polymer forming foamable material (36) to at least one of the first (32) and second (34) major surfaces of the panel, contacting said at least one of the first and second surfaces with a pressure applying surface to apply pressure thereto, foaming the polymer forming foamable material while pressure is applied and curing the applied foam material to produce a polymeric coating on the panel with the desired surface, which is typically extremely smooth. One or both surfaces may be surface treated in this manner. A skin (48) formed on the surface of the panel is believed to add to the strength and stiffness of the coating on the panel. A wide variety of foaming systems may be used to accomplish this surface treating. By avoiding sanding the surface treated panel, the skin remains intact. The resulting panel, in addition to being extremely smooth as desired, resists water penetration when subjected to water or high humidity conditions. The resulting panel is receptive to adhesives for purposes of securing overlaying materials such as vinyl, reduces formaldehyde emissions when a panel formed of the resin which emits formaldehydes is surface treated.
Abstract:
A method of forming a crosslinked cellulose product is disclosed wherein cellulose fibers are exposed to a solution that includes a catalyst and a crosslinking agent selected from the group consisting of a cyclic N-sulfatoimide or cyclic N-phosphatoimide; a dimethoxyethanal; a mixture of glyoxal and imidazolidone; a diethanol; or a periodate. Specific examples of the crosslinking agents of the present invention include pyridinium N-sulfatosuccinimide; 2,2'-sulfonyldiethanol; sodium periodate; a mixture of dimethoxyethanal and urea; and a mixture of glyoxal and 2-imidazolidone. An acid or base catalyst, as appropriate, may be used with the crosslinking agent to increase the crosslinking reaction rate. In especially preferred embodiments, cellulose fibers are exposed to the crosslinking agent and catalyst, then separated into individualized fibers in a fiberizer. The individualized fibers are then dried and cured at an elevated temperature such that intrafiber cellulose crosslinking bonds are formed to the substantial exclusion of interfiber bonds. The resulting cellulose fibers have high absorbency, bulk, and wet and dry resiliency that makes them suitable for use in such cellulose products as paper towels, diapers, and sanitary products.